A coldness metric for cache optimization

Raj Parihar, C. Ding, Michael C. Huang
{"title":"A coldness metric for cache optimization","authors":"Raj Parihar, C. Ding, Michael C. Huang","doi":"10.1145/2492408.2492419","DOIUrl":null,"url":null,"abstract":"A \"hot\" concept in program optimization is hotness. For example, program optimization targets hot paths, and register allocation targets hot variables. Cache optimization, however, has to target cold data, which are less frequently used and tend to cause cache misses whenever they are accessed. Hot data, in contrast, as they are small and frequently used, tend to stay in cache. In this paper, we define a new metric called \"coldness\" and show how the coldness varies across programs and how much colder the data we have to optimize as the cache size on modern machines increases.","PeriodicalId":130040,"journal":{"name":"Workshop on Memory System Performance and Correctness","volume":"94 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Memory System Performance and Correctness","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492408.2492419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A "hot" concept in program optimization is hotness. For example, program optimization targets hot paths, and register allocation targets hot variables. Cache optimization, however, has to target cold data, which are less frequently used and tend to cause cache misses whenever they are accessed. Hot data, in contrast, as they are small and frequently used, tend to stay in cache. In this paper, we define a new metric called "coldness" and show how the coldness varies across programs and how much colder the data we have to optimize as the cache size on modern machines increases.
缓存优化的冷度度量
程序优化中的一个“热门”概念是热度。例如,程序优化以热路径为目标,寄存器分配以热变量为目标。然而,缓存优化必须针对冷数据,这些数据使用频率较低,并且在访问它们时往往会导致缓存丢失。相反,由于热数据很小且经常被使用,因此它们倾向于留在缓存中。在本文中,我们定义了一个称为“冷度”的新度量,并展示了冷度在不同程序之间的变化,以及随着现代机器上缓存大小的增加,我们必须优化的数据有多冷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信