Recurrent Nerual Imaging: An Evolutionary Approach for Mixed Possion-Gaussian Image Denoising

A. Ranganath, Omar DeGuchy, Fabian Santiago, Mukesh Singhal, Roummel F. Marcia
{"title":"Recurrent Nerual Imaging: An Evolutionary Approach for Mixed Possion-Gaussian Image Denoising","authors":"A. Ranganath, Omar DeGuchy, Fabian Santiago, Mukesh Singhal, Roummel F. Marcia","doi":"10.1109/ICMLA55696.2022.00078","DOIUrl":null,"url":null,"abstract":"Recurrent neural networks (RNNs) are traditionally used for machine learning applications for temporal sequences such as natural language processing. Its application to image processing is relatively new. In this paper, we apply RNNs to denoise images corrupted by mixed Poisson and Gaussian noise. The motivation for using an RNN comes from viewing the denoising of the Poisson-Gaussian realization as a temporal process. The network then attempts to trace back the steps that create the noisy realization in order to arrive at the noiseless reconstruction. Numerical experiments demonstrate that our proposed RNN approach outperforms convolutional autoen-coder methods for denoising and upsampling low-resolution images from the CIFAR-10 dataset.","PeriodicalId":128160,"journal":{"name":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA55696.2022.00078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recurrent neural networks (RNNs) are traditionally used for machine learning applications for temporal sequences such as natural language processing. Its application to image processing is relatively new. In this paper, we apply RNNs to denoise images corrupted by mixed Poisson and Gaussian noise. The motivation for using an RNN comes from viewing the denoising of the Poisson-Gaussian realization as a temporal process. The network then attempts to trace back the steps that create the noisy realization in order to arrive at the noiseless reconstruction. Numerical experiments demonstrate that our proposed RNN approach outperforms convolutional autoen-coder methods for denoising and upsampling low-resolution images from the CIFAR-10 dataset.
递归神经成像:混合波塞-高斯图像去噪的进化方法
递归神经网络(rnn)传统上用于时间序列的机器学习应用,如自然语言处理。它在图像处理中的应用相对较新。在本文中,我们应用rnn去噪被混合泊松和高斯噪声破坏的图像。使用RNN的动机来自于将泊松-高斯实现的去噪视为一个时间过程。然后,网络试图追溯产生噪声实现的步骤,以达到无噪声重构。数值实验表明,我们提出的RNN方法在去噪和上采样CIFAR-10数据集中的低分辨率图像方面优于卷积自动编码方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信