A novel neural sliding mode control for multi-link robots

Xiaojiang Mu, Li Ge
{"title":"A novel neural sliding mode control for multi-link robots","authors":"Xiaojiang Mu, Li Ge","doi":"10.1109/ICAL.2012.6308134","DOIUrl":null,"url":null,"abstract":"A novel neural sliding mode controller is presented for trajectory tracking control of multi-link robots with external disturbances and uncertain system parameter errors. This approach combines neural networks and global sliding mode control. It adopts a global sliding mode manifold which eliminates reaching mode phase of conventional sliding mode control and robustness exists over all the system process. A radius basis function (RBF) neural network is applied to learn the system parameter errors and external disturbances. So the control system can automatically track the robot parameters and disturbances, and reduces chattering of the controller. Prediction estimation for robot parameters and disturbances is not needed too. Moreover, the system stability is proved by Lyapunov principle. Simulation results verify the validity of the control scheme.","PeriodicalId":373152,"journal":{"name":"2012 IEEE International Conference on Automation and Logistics","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Automation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAL.2012.6308134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel neural sliding mode controller is presented for trajectory tracking control of multi-link robots with external disturbances and uncertain system parameter errors. This approach combines neural networks and global sliding mode control. It adopts a global sliding mode manifold which eliminates reaching mode phase of conventional sliding mode control and robustness exists over all the system process. A radius basis function (RBF) neural network is applied to learn the system parameter errors and external disturbances. So the control system can automatically track the robot parameters and disturbances, and reduces chattering of the controller. Prediction estimation for robot parameters and disturbances is not needed too. Moreover, the system stability is proved by Lyapunov principle. Simulation results verify the validity of the control scheme.
一种新的多连杆机器人神经滑模控制方法
针对存在外部干扰和系统参数误差不确定的多连杆机器人的轨迹跟踪控制问题,提出了一种新的神经滑模控制器。该方法将神经网络与全局滑模控制相结合。该方法采用全局滑模流形,消除了传统滑模控制的到达模态相位,在整个系统过程中具有鲁棒性。采用半径基函数(RBF)神经网络学习系统参数误差和外界干扰。因此,控制系统可以自动跟踪机器人的参数和干扰,减少控制器的抖振。也不需要对机器人参数和干扰进行预测估计。利用李亚普诺夫原理证明了系统的稳定性。仿真结果验证了控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信