D. Lee, A. Gray, E. Kang, H. Tsou, N. Lay, W. Fong, D. Fisher, S. Hoy
{"title":"A gigabit-per-second Ka-band demonstration using a reconfigurable FPGA modulator","authors":"D. Lee, A. Gray, E. Kang, H. Tsou, N. Lay, W. Fong, D. Fisher, S. Hoy","doi":"10.1109/AERO.2005.1559427","DOIUrl":null,"url":null,"abstract":"Gigabit-per-second communications have been a desired target for future NASA Earth science missions, and for potential manned lunar missions. Frequency bandwidth at S-band and X-band is typically insufficient to support missions at these high data rates. In this paper, we present the results of a 1 Gbps 32-QAM end-to-end experiment at Ka-band using a reconfigurable field programmable gate array (FPGA) baseband modulator board. Bit error rate measurements of the received signal using a software receiver demonstrate the feasibility of using ultra-high data rates at Ka-band, although results indicate that error correcting coding and/or modulator predistortion must be implemented in addition. Also, results of the demonstration validate the low-cost, CMOS-based reconfigurable modulator approach taken to development of a high rate modulator, as opposed to more expensive ASIC or pure analog approaches","PeriodicalId":117223,"journal":{"name":"2005 IEEE Aerospace Conference","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2005.1559427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Gigabit-per-second communications have been a desired target for future NASA Earth science missions, and for potential manned lunar missions. Frequency bandwidth at S-band and X-band is typically insufficient to support missions at these high data rates. In this paper, we present the results of a 1 Gbps 32-QAM end-to-end experiment at Ka-band using a reconfigurable field programmable gate array (FPGA) baseband modulator board. Bit error rate measurements of the received signal using a software receiver demonstrate the feasibility of using ultra-high data rates at Ka-band, although results indicate that error correcting coding and/or modulator predistortion must be implemented in addition. Also, results of the demonstration validate the low-cost, CMOS-based reconfigurable modulator approach taken to development of a high rate modulator, as opposed to more expensive ASIC or pure analog approaches