Identifying Explosive Epidemiological Cases with Unsupervised Machine Learning

S. Dolgikh
{"title":"Identifying Explosive Epidemiological Cases with Unsupervised Machine Learning","authors":"S. Dolgikh","doi":"10.2196/preprints.20842","DOIUrl":null,"url":null,"abstract":"\n UNSTRUCTURED\n An analysis of a combined dataset of Wave 1 and 2 cases, aligned at approximately Local Time Zero + 2 months with unsupervised machine learning methods such as Principal Component Analysis and deep autoencoder dimensionality reduction allows to clearly separate milder background cases from those with more rapid and aggressive onset of the epidemics. The analysis and findings of the study can be used in evaluation of possible epidemiological scenarios and as an effective modeling tool to design corrective and preventative measures to avoid developments with potentially heavy impact.\n","PeriodicalId":412472,"journal":{"name":"International Workshop on Informatics & Data-Driven Medicine","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Informatics & Data-Driven Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/preprints.20842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

UNSTRUCTURED An analysis of a combined dataset of Wave 1 and 2 cases, aligned at approximately Local Time Zero + 2 months with unsupervised machine learning methods such as Principal Component Analysis and deep autoencoder dimensionality reduction allows to clearly separate milder background cases from those with more rapid and aggressive onset of the epidemics. The analysis and findings of the study can be used in evaluation of possible epidemiological scenarios and as an effective modeling tool to design corrective and preventative measures to avoid developments with potentially heavy impact.
用无监督机器学习识别爆炸性流行病学病例
对大约在本地时间0 + 2个月的波1和波2病例的组合数据集进行分析,使用无监督机器学习方法(如主成分分析和深度自动编码器降维),可以清楚地将较轻的背景病例与那些更迅速和更积极发作的流行病区分开来。该研究的分析和结果可用于评估可能的流行病学情景,并作为设计纠正和预防措施的有效建模工具,以避免可能产生严重影响的事态发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信