Generalizing Rate Control Strategies for Realtime Video Streaming via Learning from Deep Learning

Tianchi Huang, Ruixiao Zhang, Chenglei Wu, Xin Yao, Chao Zhou, Bing Yu, Lifeng Sun
{"title":"Generalizing Rate Control Strategies for Realtime Video Streaming via Learning from Deep Learning","authors":"Tianchi Huang, Ruixiao Zhang, Chenglei Wu, Xin Yao, Chao Zhou, Bing Yu, Lifeng Sun","doi":"10.1145/3338533.3366606","DOIUrl":null,"url":null,"abstract":"The leading learning-based rate control method, i.e., QARC, achieves state-of-the-art performances but fails to interpret the fundamental principles, and thus lacks the abilities to further improve itself efficiently. In this paper, we propose EQARC (Explainable QARC) via reconstructing QARC's modules, aiming to demystify how QARC works. In details, we first utilize a novel hybrid attention-based CNN+GRU model to re-characterize the original quality prediction network and reasonably replace the QARC's 1D-CNN layers with 2D-CNN layers. Using trace-driven experiment, we demonstrate the superiority of EQARC over existing state-of-the-art approaches. Next, we collect several useful information from each interpretable modules and learn the insight of EQARC. Following this step, we further propose AQARC (Advanced QARC), which is the light-weighted version of QARC. Experimental results show that AQARC achieves the same performances as the QARC with an overhead reduction of 90%. In short, through learning from deep learning, we generalize a rate control method which can both reach high performance and reduce computation cost.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Multimedia Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3338533.3366606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The leading learning-based rate control method, i.e., QARC, achieves state-of-the-art performances but fails to interpret the fundamental principles, and thus lacks the abilities to further improve itself efficiently. In this paper, we propose EQARC (Explainable QARC) via reconstructing QARC's modules, aiming to demystify how QARC works. In details, we first utilize a novel hybrid attention-based CNN+GRU model to re-characterize the original quality prediction network and reasonably replace the QARC's 1D-CNN layers with 2D-CNN layers. Using trace-driven experiment, we demonstrate the superiority of EQARC over existing state-of-the-art approaches. Next, we collect several useful information from each interpretable modules and learn the insight of EQARC. Following this step, we further propose AQARC (Advanced QARC), which is the light-weighted version of QARC. Experimental results show that AQARC achieves the same performances as the QARC with an overhead reduction of 90%. In short, through learning from deep learning, we generalize a rate control method which can both reach high performance and reduce computation cost.
基于深度学习的实时视频流泛化速率控制策略
目前领先的基于学习的速率控制方法,即QARC,虽然实现了最先进的性能,但未能解释其基本原理,因此缺乏进一步有效提高自身的能力。本文通过重构QARC的模块,提出了EQARC (Explainable QARC),旨在揭开QARC的工作原理。具体而言,我们首先利用一种新颖的基于注意力的CNN+GRU混合模型来重新表征原始质量预测网络,并合理地将QARC的1D-CNN层替换为2D-CNN层。通过跟踪驱动实验,我们证明了EQARC优于现有的最先进的方法。接下来,我们从每个可解释模块中收集一些有用的信息,并了解EQARC的见解。接下来,我们进一步提出AQARC (Advanced QARC),这是QARC的轻量级版本。实验结果表明,该算法与QARC算法性能相当,开销降低了90%。总之,通过学习深度学习,我们推广了一种既能达到高性能又能降低计算成本的速率控制方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信