Linguistic Based Emotion Detection from Live Social Media Data Classification Using Metaheuristic Deep Learning Techniques

S. Mubeen, Nandini Kulkarni, Manuel R. Tanpoco, R. D. Kumar, M. Naidu, T. Dhope
{"title":"Linguistic Based Emotion Detection from Live Social Media Data Classification Using Metaheuristic Deep Learning Techniques","authors":"S. Mubeen, Nandini Kulkarni, Manuel R. Tanpoco, R. D. Kumar, M. Naidu, T. Dhope","doi":"10.17762/ijcnis.v14i3.5604","DOIUrl":null,"url":null,"abstract":"A crucial area of research that can reveal numerous useful insights is emotional recognition. Several visible ways, including speech, gestures, written material, and facial expressions, can be used to portray emotion. Natural language processing (NLP) and DL concepts are utilised in the content-based categorization problem that is at the core of emotion recognition in text documents.This research propose novel technique in linguistic based emotion detection by social media using metaheuristic deep learning architectures. Here the input has been collected as live social media data and processed for noise removal, smoothening and dimensionality reduction. Processed data has been extracted and classified using metaheuristic swarm regressive adversarial kernel component analysis. Experimental analysis has been carried out in terms of precision, accuracy, recall, F-1 score, RMSE and MAP for various social media dataset.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Commun. Networks Inf. Secur.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17762/ijcnis.v14i3.5604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A crucial area of research that can reveal numerous useful insights is emotional recognition. Several visible ways, including speech, gestures, written material, and facial expressions, can be used to portray emotion. Natural language processing (NLP) and DL concepts are utilised in the content-based categorization problem that is at the core of emotion recognition in text documents.This research propose novel technique in linguistic based emotion detection by social media using metaheuristic deep learning architectures. Here the input has been collected as live social media data and processed for noise removal, smoothening and dimensionality reduction. Processed data has been extracted and classified using metaheuristic swarm regressive adversarial kernel component analysis. Experimental analysis has been carried out in terms of precision, accuracy, recall, F-1 score, RMSE and MAP for various social media dataset.
使用元启发式深度学习技术从实时社交媒体数据分类中进行基于语言的情感检测
可以揭示许多有用见解的一个关键研究领域是情绪识别。有几种可见的方式,包括语言、手势、书面材料和面部表情,都可以用来表达情感。自然语言处理(NLP)和深度学习(DL)概念被用于基于内容的分类问题,这是文本文档中情感识别的核心。本研究提出了一种基于语言的社交媒体情感检测新技术,该技术使用元启发式深度学习架构。在这里,输入被收集为实时社交媒体数据,并进行去噪、平滑和降维处理。使用元启发式群回归对抗核成分分析对处理后的数据进行提取和分类。实验分析了不同社交媒体数据集的精密度、正确率、召回率、F-1分数、RMSE和MAP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信