Transliteration of Name Entity via Improved Statistical Translation on Character Sequences

Yan Song, C. Kit, Xiao Chen
{"title":"Transliteration of Name Entity via Improved Statistical Translation on Character Sequences","authors":"Yan Song, C. Kit, Xiao Chen","doi":"10.3115/1699705.1699720","DOIUrl":null,"url":null,"abstract":"Transliteration of given parallel name entities can be formulated as a phrase-based statistical machine translation (SMT) process, via its routine procedure comprising training, optimization and decoding. In this paper, we present our approach to transliterating name entities using the loglinear phrase-based SMT on character sequences. Our proposed work improves the translation by using bidirectional models, plus some heuristic guidance integrated in the decoding process. Our evaluated results indicate that this approach performs well in all standard runs in the NEWS2009 Machine Transliteration Shared Task.","PeriodicalId":262513,"journal":{"name":"NEWS@IJCNLP","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEWS@IJCNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1699705.1699720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Transliteration of given parallel name entities can be formulated as a phrase-based statistical machine translation (SMT) process, via its routine procedure comprising training, optimization and decoding. In this paper, we present our approach to transliterating name entities using the loglinear phrase-based SMT on character sequences. Our proposed work improves the translation by using bidirectional models, plus some heuristic guidance integrated in the decoding process. Our evaluated results indicate that this approach performs well in all standard runs in the NEWS2009 Machine Transliteration Shared Task.
基于字符序列改进统计翻译的名称实体音译
对给定的平行名称实体进行音译,可以将其表述为基于短语的统计机器翻译(SMT)过程,该过程包括训练、优化和解码。在本文中,我们提出了在字符序列上使用基于loglinear短语的SMT来音译名称实体的方法。我们提出的工作通过使用双向模型以及在解码过程中集成的启发式指导来改进翻译。我们的评估结果表明,这种方法在NEWS2009机器音译共享任务的所有标准运行中都表现良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信