IOT device code translators using LSTM networks

K. Cashion, Satish Ravindran, Nilesh U. Powar, Joshua Gold
{"title":"IOT device code translators using LSTM networks","authors":"K. Cashion, Satish Ravindran, Nilesh U. Powar, Joshua Gold","doi":"10.1109/NAECON.2017.8268750","DOIUrl":null,"url":null,"abstract":"Currently, the Internet of Things (IOT) platform used by large buildings to manage the indoor climate uses different controllers and sensors from multiple manufacturers. Communication between these devices requires a human in the loop to translate each devices data to to be compatible with a common integration engine and storage historian. The subject matter expert needs to decipher the non-standard naming convention used for each device and manually translate thousands of codes each time a new device has to be integrated. To aid the human translator, we propose a technique to implement a smart translator using Deep Neural Networks (DNN) by automatically assigning any registers with recognized data patterns to standardized labels.","PeriodicalId":306091,"journal":{"name":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2017.8268750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Currently, the Internet of Things (IOT) platform used by large buildings to manage the indoor climate uses different controllers and sensors from multiple manufacturers. Communication between these devices requires a human in the loop to translate each devices data to to be compatible with a common integration engine and storage historian. The subject matter expert needs to decipher the non-standard naming convention used for each device and manually translate thousands of codes each time a new device has to be integrated. To aid the human translator, we propose a technique to implement a smart translator using Deep Neural Networks (DNN) by automatically assigning any registers with recognized data patterns to standardized labels.
物联网设备代码翻译使用LSTM网络
目前,大型建筑用于管理室内气候的物联网(IOT)平台使用来自多个制造商的不同控制器和传感器。这些设备之间的通信需要有人将每个设备的数据转换为与公共集成引擎和存储历史记录兼容。主题专家需要破译用于每个设备的非标准命名约定,并在每次必须集成新设备时手动翻译数千个代码。为了帮助人类翻译,我们提出了一种使用深度神经网络(DNN)实现智能翻译的技术,该技术通过自动将任何具有识别数据模式的寄存器分配给标准化标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信