{"title":"PRESTO: a latency-aware power-capping orchestrator for cloud-native microservices","authors":"Rolando Brondolin, M. Santambrogio","doi":"10.1109/ACSOS49614.2020.00021","DOIUrl":null,"url":null,"abstract":"Power consumption is a major concern for cloud data-centers. In this context, cloud-native applications emerged in the last few years and fostered the adoption of the cloud computing model across many organizations. Cloud-native workloads are highly heterogeneous, co-located and latency-sensitive and are able to scale to a high number of machines. To properly manage their power consumption, within this paper we propose Power REgulator for Service Time Optimization (PRESTO), a latency-aware power-capping orchestrator. PRESTO defines an Observe Decide Act (ODA) loop to manage power consumption and average latency of microservice-based workloads by considering all the network interactions between microservices in the cluster. PRESTO reduces the power consumption by 37.13% on average with a control error that is below 12.5% and below 1.5ms on average w.r.t. an unconstrained execution.","PeriodicalId":310362,"journal":{"name":"2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSOS49614.2020.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Power consumption is a major concern for cloud data-centers. In this context, cloud-native applications emerged in the last few years and fostered the adoption of the cloud computing model across many organizations. Cloud-native workloads are highly heterogeneous, co-located and latency-sensitive and are able to scale to a high number of machines. To properly manage their power consumption, within this paper we propose Power REgulator for Service Time Optimization (PRESTO), a latency-aware power-capping orchestrator. PRESTO defines an Observe Decide Act (ODA) loop to manage power consumption and average latency of microservice-based workloads by considering all the network interactions between microservices in the cluster. PRESTO reduces the power consumption by 37.13% on average with a control error that is below 12.5% and below 1.5ms on average w.r.t. an unconstrained execution.