PRESTO: a latency-aware power-capping orchestrator for cloud-native microservices

Rolando Brondolin, M. Santambrogio
{"title":"PRESTO: a latency-aware power-capping orchestrator for cloud-native microservices","authors":"Rolando Brondolin, M. Santambrogio","doi":"10.1109/ACSOS49614.2020.00021","DOIUrl":null,"url":null,"abstract":"Power consumption is a major concern for cloud data-centers. In this context, cloud-native applications emerged in the last few years and fostered the adoption of the cloud computing model across many organizations. Cloud-native workloads are highly heterogeneous, co-located and latency-sensitive and are able to scale to a high number of machines. To properly manage their power consumption, within this paper we propose Power REgulator for Service Time Optimization (PRESTO), a latency-aware power-capping orchestrator. PRESTO defines an Observe Decide Act (ODA) loop to manage power consumption and average latency of microservice-based workloads by considering all the network interactions between microservices in the cluster. PRESTO reduces the power consumption by 37.13% on average with a control error that is below 12.5% and below 1.5ms on average w.r.t. an unconstrained execution.","PeriodicalId":310362,"journal":{"name":"2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSOS49614.2020.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Power consumption is a major concern for cloud data-centers. In this context, cloud-native applications emerged in the last few years and fostered the adoption of the cloud computing model across many organizations. Cloud-native workloads are highly heterogeneous, co-located and latency-sensitive and are able to scale to a high number of machines. To properly manage their power consumption, within this paper we propose Power REgulator for Service Time Optimization (PRESTO), a latency-aware power-capping orchestrator. PRESTO defines an Observe Decide Act (ODA) loop to manage power consumption and average latency of microservice-based workloads by considering all the network interactions between microservices in the cluster. PRESTO reduces the power consumption by 37.13% on average with a control error that is below 12.5% and below 1.5ms on average w.r.t. an unconstrained execution.
PRESTO:用于云原生微服务的延迟感知功率上限编排器
功耗是云数据中心的一个主要问题。在这种情况下,云原生应用程序在过去几年中出现,并促进了云计算模型在许多组织中的采用。云原生工作负载是高度异构的、位于同一位置的、对延迟敏感的,并且能够扩展到大量的机器。为了适当地管理它们的功耗,在本文中,我们提出了用于服务时间优化的功率调节器(PRESTO),这是一种延迟感知的功率上限编排器。PRESTO定义了一个观察决定行为(ODA)循环,通过考虑集群中微服务之间的所有网络交互来管理基于微服务的工作负载的功耗和平均延迟。PRESTO平均降低了37.13%的功耗,控制误差低于12.5%,在无约束执行时平均w.r.t.低于1.5ms。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信