Fisher information lower bounds for sampling

Sinho Chewi, P. Gerber, Holden Lee, Chen Lu
{"title":"Fisher information lower bounds for sampling","authors":"Sinho Chewi, P. Gerber, Holden Lee, Chen Lu","doi":"10.48550/arXiv.2210.02482","DOIUrl":null,"url":null,"abstract":"We prove two lower bounds for the complexity of non-log-concave sampling within the framework of Balasubramanian et al. (2022), who introduced the use of Fisher information (FI) bounds as a notion of approximate first-order stationarity in sampling. Our first lower bound shows that averaged LMC is optimal for the regime of large FI by reducing the problem of finding stationary points in non-convex optimization to sampling. Our second lower bound shows that in the regime of small FI, obtaining a FI of at most $\\varepsilon^2$ from the target distribution requires $\\text{poly}(1/\\varepsilon)$ queries, which is surprising as it rules out the existence of high-accuracy algorithms (e.g., algorithms using Metropolis-Hastings filters) in this context.","PeriodicalId":267197,"journal":{"name":"International Conference on Algorithmic Learning Theory","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithmic Learning Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.02482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We prove two lower bounds for the complexity of non-log-concave sampling within the framework of Balasubramanian et al. (2022), who introduced the use of Fisher information (FI) bounds as a notion of approximate first-order stationarity in sampling. Our first lower bound shows that averaged LMC is optimal for the regime of large FI by reducing the problem of finding stationary points in non-convex optimization to sampling. Our second lower bound shows that in the regime of small FI, obtaining a FI of at most $\varepsilon^2$ from the target distribution requires $\text{poly}(1/\varepsilon)$ queries, which is surprising as it rules out the existence of high-accuracy algorithms (e.g., algorithms using Metropolis-Hastings filters) in this context.
抽样的费雪信息下界
我们在Balasubramanian等人(2022)的框架内证明了非对数凹采样复杂性的两个下界,他们引入了Fisher信息(FI)界作为采样中近似一阶平稳性的概念。我们的第一个下界表明,通过将非凸优化中寻找平稳点的问题减少到采样,平均LMC对于大FI区域是最优的。我们的第二个下界表明,在小FI的情况下,从目标分布中获得最多$\varepsilon^2$的FI需要$\text{poly}(1/\varepsilon)$查询,这是令人惊讶的,因为它排除了在这种情况下存在的高精度算法(例如,使用Metropolis-Hastings过滤器的算法)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信