Peter Smit, Siva Charan Reddy Gangireddy, Seppo Enarvi, Sami Virpioja, M. Kurimo
{"title":"Aalto system for the 2017 Arabic multi-genre broadcast challenge","authors":"Peter Smit, Siva Charan Reddy Gangireddy, Seppo Enarvi, Sami Virpioja, M. Kurimo","doi":"10.1109/ASRU.2017.8268955","DOIUrl":null,"url":null,"abstract":"We describe the speech recognition systems we have created for MGB-3, the 3rd Multi Genre Broadcast challenge, which this year consisted of a task of building a system for transcribing Egyptian Dialect Arabic speech, using a big audio corpus of primarily Modern Standard Arabic speech and only a small amount (5 hours) of Egyptian adaptation data. Our system, which was a combination of different acoustic models, language models and lexical units, achieved a Multi-Reference Word Error Rate of 29.25%, which was the lowest in the competition. Also on the old MGB-2 task, which was run again to indicate progress, we achieved the lowest error rate: 13.2%. The result is a combination of the application of state-of-the-art speech recognition methods such as simple dialect adaptation for a Time-Delay Neural Network (TDNN) acoustic model (−27% errors compared to the baseline), Recurrent Neural Network Language Model (RNNLM) rescoring (an additional −5%), and system combination with Minimum Bayes Risk (MBR) decoding (yet another −10%). We also explored the use of morph and character language models, which was particularly beneficial in providing a rich pool of systems for the MBR decoding.","PeriodicalId":290868,"journal":{"name":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"210 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2017.8268955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
We describe the speech recognition systems we have created for MGB-3, the 3rd Multi Genre Broadcast challenge, which this year consisted of a task of building a system for transcribing Egyptian Dialect Arabic speech, using a big audio corpus of primarily Modern Standard Arabic speech and only a small amount (5 hours) of Egyptian adaptation data. Our system, which was a combination of different acoustic models, language models and lexical units, achieved a Multi-Reference Word Error Rate of 29.25%, which was the lowest in the competition. Also on the old MGB-2 task, which was run again to indicate progress, we achieved the lowest error rate: 13.2%. The result is a combination of the application of state-of-the-art speech recognition methods such as simple dialect adaptation for a Time-Delay Neural Network (TDNN) acoustic model (−27% errors compared to the baseline), Recurrent Neural Network Language Model (RNNLM) rescoring (an additional −5%), and system combination with Minimum Bayes Risk (MBR) decoding (yet another −10%). We also explored the use of morph and character language models, which was particularly beneficial in providing a rich pool of systems for the MBR decoding.