Evaluation of Machine Learning Algorithms on Power Control of Massive MIMO Systems

Neda Ahmadi, I. Mporas, P. Kourtessis, J. Senior
{"title":"Evaluation of Machine Learning Algorithms on Power Control of Massive MIMO Systems","authors":"Neda Ahmadi, I. Mporas, P. Kourtessis, J. Senior","doi":"10.1109/CSNDSP54353.2022.9908031","DOIUrl":null,"url":null,"abstract":"Power control (PC) plays a crucial role in massive multiple-input-multiple-output (m-MIMO) networks. Several heuristic algorithms, like the weighted mean square error (WMMSE) algorithm are used to optimise the PC. In order these algorithms to perform the power control they require high computational power. In this paper, we address the problem through the application of machine learning (ML)-based algorithms as they can produce close to optimal solutions with lower computational complexity. We evaluate use of several different machine learning (ML) methods such as deep neural networks (DNN), deep Q-learning (DQL), support vector machines (SVM) with radial basis function (RBF), K-nearest neighbours (KNN), linear regression (LR), and decision trees (DT) to maximise the sum spectral efficiency (SE). The evaluation results demonstrate that the ML based approaches can approximate near to the WMMSE based method.","PeriodicalId":288069,"journal":{"name":"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNDSP54353.2022.9908031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Power control (PC) plays a crucial role in massive multiple-input-multiple-output (m-MIMO) networks. Several heuristic algorithms, like the weighted mean square error (WMMSE) algorithm are used to optimise the PC. In order these algorithms to perform the power control they require high computational power. In this paper, we address the problem through the application of machine learning (ML)-based algorithms as they can produce close to optimal solutions with lower computational complexity. We evaluate use of several different machine learning (ML) methods such as deep neural networks (DNN), deep Q-learning (DQL), support vector machines (SVM) with radial basis function (RBF), K-nearest neighbours (KNN), linear regression (LR), and decision trees (DT) to maximise the sum spectral efficiency (SE). The evaluation results demonstrate that the ML based approaches can approximate near to the WMMSE based method.
大规模MIMO系统功率控制中的机器学习算法评价
功率控制在大规模多输入多输出(m-MIMO)网络中起着至关重要的作用。采用加权均方误差(WMMSE)算法等启发式算法对PC机进行优化。为了使这些算法执行功率控制,它们需要很高的计算能力。在本文中,我们通过应用基于机器学习(ML)的算法来解决这个问题,因为它们可以以较低的计算复杂性产生接近最优的解决方案。我们评估了几种不同的机器学习(ML)方法的使用,如深度神经网络(DNN)、深度q -学习(DQL)、支持向量机(SVM)与径向基函数(RBF)、k近邻(KNN)、线性回归(LR)和决策树(DT),以最大限度地提高和频谱效率(SE)。评估结果表明,基于机器学习的方法可以近似于基于WMMSE的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信