Conspicuity-based visual scene semantic similarity computing for video

Wei Wei, Tianyun Yan, Yuan-Mao Zhang
{"title":"Conspicuity-based visual scene semantic similarity computing for video","authors":"Wei Wei, Tianyun Yan, Yuan-Mao Zhang","doi":"10.1109/ICMLC.2010.5580490","DOIUrl":null,"url":null,"abstract":"Based on saliency region representation of visual scene, a framework for quantifying the semantic similarity of two video scenes is proposed in this paper. Frame-segment key-frame strategy is used to concisely represent video content in temporal domain. Spatio-temporal conspicuity model for basic visual semantics, a neuromorphic model that simulates human visual system, is used to select dynamic and static spatial salient areas. With pattern classification technique, the basic visual semantics are recognized. Then, the similarity of two visual scenes is calculated according to information theoretic similarity principles and Tversky's set-theoretic similarity. Experiment results demonstrate the framework could compute quantitative semantic similarity of two video scenes.","PeriodicalId":126080,"journal":{"name":"2010 International Conference on Machine Learning and Cybernetics","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2010.5580490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Based on saliency region representation of visual scene, a framework for quantifying the semantic similarity of two video scenes is proposed in this paper. Frame-segment key-frame strategy is used to concisely represent video content in temporal domain. Spatio-temporal conspicuity model for basic visual semantics, a neuromorphic model that simulates human visual system, is used to select dynamic and static spatial salient areas. With pattern classification technique, the basic visual semantics are recognized. Then, the similarity of two visual scenes is calculated according to information theoretic similarity principles and Tversky's set-theoretic similarity. Experiment results demonstrate the framework could compute quantitative semantic similarity of two video scenes.
基于显著性的视频视觉场景语义相似度计算
基于视觉场景的显著区域表示,提出了一种量化两个视频场景语义相似度的框架。采用帧段关键帧策略,在时域内简洁地表示视频内容。基本视觉语义时空显著性模型是一种模拟人类视觉系统的神经形态模型,用于选择动态和静态空间显著区。利用模式分类技术,识别基本的视觉语义。然后,根据信息论相似原理和Tversky集合论相似度计算两个视觉场景的相似度。实验结果表明,该框架可以定量计算两个视频场景的语义相似度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信