Gabidulin Codes with Support Constraints

Hikmet Yildiz, B. Hassibi
{"title":"Gabidulin Codes with Support Constraints","authors":"Hikmet Yildiz, B. Hassibi","doi":"10.1109/ITW44776.2019.8988992","DOIUrl":null,"url":null,"abstract":"Gabidulin codes are the first general construction of linear codes that are maximum rank distance (MRD). They have found applications in linear network coding, for example, when the transmitter and receiver are oblivious to the inner workings and topology of the network (the so-called incoherent regime). The reason is that Gabidulin codes can be used to map information to linear subspaces, which in the absence of errors cannot be altered by linear operations, and in the presence of errors can be corrected if the subspace is perturbed by a small rank. Furthermore, in distributed coding and distributed systems, one is led to the design of error correcting codes whose generator matrix must satisfy a given support constraint. In this paper, we give necessary and sufficient conditions on the support of the generator matrix that guarantees the existence of Gabidulin codes and general MRD codes. When the rate of the code is not very high, this is achieved with the same field size necessary for Gabidulin codes with no support constraint. When these conditions are not satisfied, we characterize the largest possible rank distance under the support constraints and show that they can be achieved by subcodes of Gabidulin codes. The necessary and sufficient conditions are identical to those that appear for MDS codes which were recently proven in [1], [2] in the context of settling the GM-MDS conjecture.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8988992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Gabidulin codes are the first general construction of linear codes that are maximum rank distance (MRD). They have found applications in linear network coding, for example, when the transmitter and receiver are oblivious to the inner workings and topology of the network (the so-called incoherent regime). The reason is that Gabidulin codes can be used to map information to linear subspaces, which in the absence of errors cannot be altered by linear operations, and in the presence of errors can be corrected if the subspace is perturbed by a small rank. Furthermore, in distributed coding and distributed systems, one is led to the design of error correcting codes whose generator matrix must satisfy a given support constraint. In this paper, we give necessary and sufficient conditions on the support of the generator matrix that guarantees the existence of Gabidulin codes and general MRD codes. When the rate of the code is not very high, this is achieved with the same field size necessary for Gabidulin codes with no support constraint. When these conditions are not satisfied, we characterize the largest possible rank distance under the support constraints and show that they can be achieved by subcodes of Gabidulin codes. The necessary and sufficient conditions are identical to those that appear for MDS codes which were recently proven in [1], [2] in the context of settling the GM-MDS conjecture.
支持约束的Gabidulin代码
加比都林码是第一个具有最大秩距(MRD)的线性码的通用结构。他们已经在线性网络编码中找到了应用,例如,当发射器和接收器对网络的内部工作和拓扑结构(所谓的非相干状态)一无所知时。原因是Gabidulin码可以用于将信息映射到线性子空间,在没有错误的情况下,不能通过线性操作改变,并且在存在错误的情况下,如果子空间受到小秩的扰动,则可以纠正。此外,在分布式编码和分布式系统中,导致了纠错码的设计,其生成器矩阵必须满足给定的支持约束。本文给出了保证Gabidulin码和一般MRD码存在的生成矩阵的支持性的充分必要条件。当代码的比率不是很高时,这是用Gabidulin代码所需的相同字段大小来实现的,没有支持约束。当这些条件不满足时,我们描述了支持约束下最大可能的秩距离,并表明它们可以通过Gabidulin码的子码来实现。其充要条件与最近在解决GM-MDS猜想的背景下[1]、[2]证明的MDS码的充要条件相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信