Performance analysis in the context of selection diversity in non-identically distributed Weibull fading channels

R. Kwan, C. Leung
{"title":"Performance analysis in the context of selection diversity in non-identically distributed Weibull fading channels","authors":"R. Kwan, C. Leung","doi":"10.1109/PACRIM.2005.1517334","DOIUrl":null,"url":null,"abstract":"In this paper, some analytical results for selection diversity over Weibull fading channels are presented. In particular, an analytical expression for the probability density function (pdf) of the maximum of a set of independent but not necessarily identically distributed (i.n.d.) Weibull random variables is derived. Expressions for the corresponding cumulative distribution function (cdf), moment generating function (MGF), and r-th moment are also obtained. The usefulness of the results is illustrated by application to the evaluation of outage probabilities.","PeriodicalId":346880,"journal":{"name":"PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005.","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PACRIM. 2005 IEEE Pacific Rim Conference on Communications, Computers and signal Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACRIM.2005.1517334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, some analytical results for selection diversity over Weibull fading channels are presented. In particular, an analytical expression for the probability density function (pdf) of the maximum of a set of independent but not necessarily identically distributed (i.n.d.) Weibull random variables is derived. Expressions for the corresponding cumulative distribution function (cdf), moment generating function (MGF), and r-th moment are also obtained. The usefulness of the results is illustrated by application to the evaluation of outage probabilities.
非同分布威布尔衰落信道中选择多样性的性能分析
本文给出了威布尔衰落信道选择分集的一些分析结果。特别是,一组独立但不一定同分布(i.n.d)的最大值的概率密度函数(pdf)的解析表达式。推导了威布尔随机变量。得到了相应的累积分布函数(cdf)、矩生成函数(MGF)和r-th矩的表达式。通过对中断概率评估的应用,说明了所得结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信