Micro-Benchmarking MPI Partitioned Point-to-Point Communication

Yiltan Hassan Temuçin, Ryan E. Grant, A. Afsahi
{"title":"Micro-Benchmarking MPI Partitioned Point-to-Point Communication","authors":"Yiltan Hassan Temuçin, Ryan E. Grant, A. Afsahi","doi":"10.1145/3545008.3545088","DOIUrl":null,"url":null,"abstract":"Modern High-Performance Computing (HPC) architectures have developed the need for scalable hybrid programming models. The latest Message Passing Interface (MPI) 4.0 standard has introduced a new communication model: MPI Partitioned Point-to-Point communication. This new model allows for the contribution of data from multiple threads with lower overheads than with traditional MPI point-to-point communication. In this paper, we design the first publicly available micro-benchmark suite for MPI Partitioned to measure various metrics that can give insight into the benefits of using this new model and scenarios where MPI point-to-point is better suited. Suggestions are provided to application developers on how to choose partition size for their application based on compute and message size. We evaluate MPI Partitioned communication with both a hot and cold CPU cache, system noise with different probability distributions, point-to-point communication directly, and with commonly used MPI communication patterns such as a halo exchange and Sweep3D.","PeriodicalId":360504,"journal":{"name":"Proceedings of the 51st International Conference on Parallel Processing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545008.3545088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Modern High-Performance Computing (HPC) architectures have developed the need for scalable hybrid programming models. The latest Message Passing Interface (MPI) 4.0 standard has introduced a new communication model: MPI Partitioned Point-to-Point communication. This new model allows for the contribution of data from multiple threads with lower overheads than with traditional MPI point-to-point communication. In this paper, we design the first publicly available micro-benchmark suite for MPI Partitioned to measure various metrics that can give insight into the benefits of using this new model and scenarios where MPI point-to-point is better suited. Suggestions are provided to application developers on how to choose partition size for their application based on compute and message size. We evaluate MPI Partitioned communication with both a hot and cold CPU cache, system noise with different probability distributions, point-to-point communication directly, and with commonly used MPI communication patterns such as a halo exchange and Sweep3D.
MPI分区点对点通信的微基准测试
现代高性能计算(HPC)体系结构已经发展出对可伸缩混合编程模型的需求。最新的消息传递接口(MPI) 4.0标准引入了一种新的通信模型:MPI分区点对点通信。与传统的MPI点对点通信相比,这个新模型允许来自多个线程的数据贡献,开销更低。在本文中,我们为MPI partitioning设计了第一个公开可用的微基准套件,用于测量各种指标,这些指标可以深入了解使用这种新模型的好处以及MPI点对点更适合的场景。为应用程序开发人员提供了关于如何根据计算和消息大小为其应用程序选择分区大小的建议。我们通过冷热CPU缓存、不同概率分布的系统噪声、点对点直接通信以及常用的MPI通信模式(如halo交换和Sweep3D)来评估MPI分区通信。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信