On comparison of deep learning architectures for distant speech recognition

Rika Sustika, A. R. Yuliani, Efendi Zaenudin, H. Pardede
{"title":"On comparison of deep learning architectures for distant speech recognition","authors":"Rika Sustika, A. R. Yuliani, Efendi Zaenudin, H. Pardede","doi":"10.1109/ICITISEE.2017.8285488","DOIUrl":null,"url":null,"abstract":"Deep Learning technologies are becoming the major approaches for natural signal and information processings, including for speech recognition. Many architectures for deep learning have been proposed for automatic speech recognition (ASR). In this paper, we investigate the robustness of various deep learning architectures: DBN-DNN (Deep Belief Network Deep Neural Network), LSTM (Long Short Term Memory), TDNN (Time Delay Neural Network), and CNN (Convolutional Neural Network), for distant speech recognition. The architectures are evaluated on Meeting Recorder Digits (MRD) set of Aurora-5 dataset, a corpus of real recordings on reverberant conditions. Experimental results show that CNN consistently offer the best performance on two most commonly used features in ASR, i.e. Mel Frequency Cepstral Coefficients (MFCC) and Perceptual Linear Prediction (PLP).","PeriodicalId":130873,"journal":{"name":"2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International conferences on Information Technology, Information Systems and Electrical Engineering (ICITISEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITISEE.2017.8285488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Deep Learning technologies are becoming the major approaches for natural signal and information processings, including for speech recognition. Many architectures for deep learning have been proposed for automatic speech recognition (ASR). In this paper, we investigate the robustness of various deep learning architectures: DBN-DNN (Deep Belief Network Deep Neural Network), LSTM (Long Short Term Memory), TDNN (Time Delay Neural Network), and CNN (Convolutional Neural Network), for distant speech recognition. The architectures are evaluated on Meeting Recorder Digits (MRD) set of Aurora-5 dataset, a corpus of real recordings on reverberant conditions. Experimental results show that CNN consistently offer the best performance on two most commonly used features in ASR, i.e. Mel Frequency Cepstral Coefficients (MFCC) and Perceptual Linear Prediction (PLP).
远距离语音识别中深度学习体系结构的比较
深度学习技术正在成为自然信号和信息处理的主要方法,包括语音识别。针对自动语音识别(ASR),人们提出了许多深度学习的架构。在本文中,我们研究了各种深度学习架构的鲁棒性:DBN-DNN(深度信念网络深度神经网络),LSTM(长短期记忆),TDNN(时间延迟神经网络)和CNN(卷积神经网络),用于远程语音识别。在Aurora-5数据集(混响条件下的真实录音语料库)的会议记录数字(MRD)集上对这些架构进行了评估。实验结果表明,CNN在ASR中两个最常用的特征,即Mel频率倒谱系数(MFCC)和感知线性预测(PLP)上始终具有最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信