Grey clustering based diagnosis of induction motor faults

Mehmet Saman, I. Aydin, E. Akin
{"title":"Grey clustering based diagnosis of induction motor faults","authors":"Mehmet Saman, I. Aydin, E. Akin","doi":"10.1109/SIU.2009.5136332","DOIUrl":null,"url":null,"abstract":"In this paper, a fault classification method based on grey clustering is proposed for fault detection of induction motors. The amplitudes of rotor frequency related sideband components obtained through fourier transform of one phase stator current are used for broken rotor bar faults. Park's vector components are extracted from three phase motor currents and then new feature is obtained using principal component analysis on park vector components. Obtained features constitute the inputs of grey clustering algorithm. One broken rotor bar, stator faults and stator and multiple faults are diagnosed.","PeriodicalId":219938,"journal":{"name":"2009 IEEE 17th Signal Processing and Communications Applications Conference","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 17th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2009.5136332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a fault classification method based on grey clustering is proposed for fault detection of induction motors. The amplitudes of rotor frequency related sideband components obtained through fourier transform of one phase stator current are used for broken rotor bar faults. Park's vector components are extracted from three phase motor currents and then new feature is obtained using principal component analysis on park vector components. Obtained features constitute the inputs of grey clustering algorithm. One broken rotor bar, stator faults and stator and multiple faults are diagnosed.
基于灰色聚类的感应电机故障诊断
提出了一种基于灰色聚类的异步电动机故障分类方法。通过对一相定子电流进行傅里叶变换得到转子频率相关边带分量的幅值,用于转子断条故障。从三相电机电流中提取Park矢量分量,然后对Park矢量分量进行主成分分析,得到新的特征。得到的特征构成了灰色聚类算法的输入。对转子断条、定子故障和定子多故障进行了诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信