Online Course Quality Evaluation Based on BERT

Ya Zhou, Meng Li
{"title":"Online Course Quality Evaluation Based on BERT","authors":"Ya Zhou, Meng Li","doi":"10.1109/CISCE50729.2020.00057","DOIUrl":null,"url":null,"abstract":"In order to evaluate the quality of online courses, this paper proposes a framework based on online course feature extraction and sentiment analysis, and applies this framework to the online courses of MOOC. Extract the word pair of the review data through the word frequency syntactic dependency, and merge the word pair into the sentiment classification of the BERT model to realize the fine-grained feature analysis of the online course review data, so as to obtain online courses in each Use this aspect to evaluate the quality of the course. Experiments conducted on MOOC online course reviews show that the BERT model incorporating binary features has improved accuracy, recall, and F1 values compared to traditional machine learning methods.","PeriodicalId":101777,"journal":{"name":"2020 International Conference on Communications, Information System and Computer Engineering (CISCE)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Communications, Information System and Computer Engineering (CISCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISCE50729.2020.00057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to evaluate the quality of online courses, this paper proposes a framework based on online course feature extraction and sentiment analysis, and applies this framework to the online courses of MOOC. Extract the word pair of the review data through the word frequency syntactic dependency, and merge the word pair into the sentiment classification of the BERT model to realize the fine-grained feature analysis of the online course review data, so as to obtain online courses in each Use this aspect to evaluate the quality of the course. Experiments conducted on MOOC online course reviews show that the BERT model incorporating binary features has improved accuracy, recall, and F1 values compared to traditional machine learning methods.
基于BERT的在线课程质量评价
为了对网络课程质量进行评价,本文提出了一个基于网络课程特征提取和情感分析的框架,并将该框架应用于MOOC网络课程。通过词频句法依赖提取点评数据的词对,并将该词对合并到BERT模型的情感分类中,实现对在线课程点评数据的细粒度特征分析,从而获得在线课程在各个方面的使用情况,以此来评价课程的质量。在MOOC在线课程评论上进行的实验表明,与传统的机器学习方法相比,结合二元特征的BERT模型提高了准确率、召回率和F1值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信