Monocrystalline 4H Silicon Carbide-on-Insulator Substrates for Nav-Grade Planar BAW Gyroscopes

B. Hamelin, Jeremy Yang, Zhenming Liu, F. Ayazi
{"title":"Monocrystalline 4H Silicon Carbide-on-Insulator Substrates for Nav-Grade Planar BAW Gyroscopes","authors":"B. Hamelin, Jeremy Yang, Zhenming Liu, F. Ayazi","doi":"10.1109/INERTIAL51137.2021.9430480","DOIUrl":null,"url":null,"abstract":"This paper reports on the unique merits of monocrystalline hexagonal silicon carbide-on-insulator (4H-SiCOI) substrates for the implementation of maximally-driven bulk acoustic wave (BAW) gyroscopes on a chip. The scaling of performance in planar silicon micromechanical gyroscopes over the past two decades has hovered above inertial-grade level. The material properties of monocrystalline hexagonal silicon carbide, an isoelastic high acoustic velocity semiconductor with ultra-low internal damping, are superbly amenable to mode-matched ultra-high-Q micromechanical resonant gyroscopes with low mechanical Brownian noise. The recent development of 40,..m-thick bond and etch-back SiCOI substrates and their nanoscale-precision DRIE may enable maximally-driven ultra-high-Q planar SiC BAW gyroscopes with navigation-grade performance on a chip","PeriodicalId":424028,"journal":{"name":"2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"16 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INERTIAL51137.2021.9430480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper reports on the unique merits of monocrystalline hexagonal silicon carbide-on-insulator (4H-SiCOI) substrates for the implementation of maximally-driven bulk acoustic wave (BAW) gyroscopes on a chip. The scaling of performance in planar silicon micromechanical gyroscopes over the past two decades has hovered above inertial-grade level. The material properties of monocrystalline hexagonal silicon carbide, an isoelastic high acoustic velocity semiconductor with ultra-low internal damping, are superbly amenable to mode-matched ultra-high-Q micromechanical resonant gyroscopes with low mechanical Brownian noise. The recent development of 40,..m-thick bond and etch-back SiCOI substrates and their nanoscale-precision DRIE may enable maximally-driven ultra-high-Q planar SiC BAW gyroscopes with navigation-grade performance on a chip
用于nav级平面BAW陀螺仪的单晶4H绝缘体上碳化硅衬底
本文报道了在芯片上实现最大驱动体声波(BAW)陀螺仪的单晶六方绝缘体碳化硅(4H-SiCOI)衬底的独特优点。在过去的二十年里,平面硅微机械陀螺仪的性能一直徘徊在惯性级水平之上。单晶六方碳化硅是一种具有超低内阻尼的等弹性高声速半导体,其材料性能非常适合于具有低机械布朗噪声的模式匹配的超高q微机械谐振陀螺仪。最近的发展……m厚的键合和蚀刻式SiCOI衬底及其纳米级精度的drive可以在芯片上实现最大驱动的超高q平面SiC BAW陀螺仪,具有导航级性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信