Concept-based Web Search using Domain Prediction and Parallel Query Expansion

Rahul Joshi, Y. Aslandogan
{"title":"Concept-based Web Search using Domain Prediction and Parallel Query Expansion","authors":"Rahul Joshi, Y. Aslandogan","doi":"10.1109/IRI.2006.252407","DOIUrl":null,"url":null,"abstract":"We address the problem of irrelevant results for short queries on Web search engines using latent semantic indexing in the WordSpace model and query expansion. First, we predict the potential concept topics, which are the domains for the search terms. Next, we expand the search terms in each of the predicted domains in parallel. We then submit separate queries, specialized for each domain, to a general-purpose search engine. The user is presented with categorized search results under the predicted domains. We prepared a categorized text collection (corpus) using Web directory listing to build word association models. We compare the results obtained using this corpus with those using Reuters corpus. User evaluations indicate that our approach helps the users avoid having to examine irrelevant Web search results, especially with short queries","PeriodicalId":402255,"journal":{"name":"2006 IEEE International Conference on Information Reuse & Integration","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Information Reuse & Integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2006.252407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We address the problem of irrelevant results for short queries on Web search engines using latent semantic indexing in the WordSpace model and query expansion. First, we predict the potential concept topics, which are the domains for the search terms. Next, we expand the search terms in each of the predicted domains in parallel. We then submit separate queries, specialized for each domain, to a general-purpose search engine. The user is presented with categorized search results under the predicted domains. We prepared a categorized text collection (corpus) using Web directory listing to build word association models. We compare the results obtained using this corpus with those using Reuters corpus. User evaluations indicate that our approach helps the users avoid having to examine irrelevant Web search results, especially with short queries
基于概念的基于领域预测和并行查询扩展的Web搜索
我们使用WordSpace模型中的潜在语义索引和查询扩展来解决Web搜索引擎上短查询结果不相关的问题。首先,我们预测潜在的概念主题,即搜索词的领域。接下来,我们并行扩展每个预测域中的搜索项。然后,我们将针对每个领域的单独查询提交给通用搜索引擎。用户将在预测的域下获得分类搜索结果。我们使用Web目录列表准备了一个分类的文本集合(语料库)来构建词关联模型。我们将使用该语料库获得的结果与使用路透社语料库获得的结果进行比较。用户评价表明,我们的方法可以帮助用户避免检查不相关的Web搜索结果,特别是对于简短的查询
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信