Temporal feature analysis in brain-inspired neural systems

T. Fukai, Toshitake Asabuki
{"title":"Temporal feature analysis in brain-inspired neural systems","authors":"T. Fukai, Toshitake Asabuki","doi":"10.23919/SNW.2019.8782948","DOIUrl":null,"url":null,"abstract":"The brain identifies potentially salient features within continuous information streams, but the underlying mechanisms are poorly understood. I will show two biologically inspired neural network models that perform such analyses. The seemingly different models suggest a common principle, which we term self-consistent mismatch detection, for temporal feature analyses. A network of two-compartment neuron model implementing this principle conducts a surprisingly wide variety of temporal feature analysis. The model is also potentially useful in neural engineering.","PeriodicalId":170513,"journal":{"name":"2019 Silicon Nanoelectronics Workshop (SNW)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Silicon Nanoelectronics Workshop (SNW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SNW.2019.8782948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The brain identifies potentially salient features within continuous information streams, but the underlying mechanisms are poorly understood. I will show two biologically inspired neural network models that perform such analyses. The seemingly different models suggest a common principle, which we term self-consistent mismatch detection, for temporal feature analyses. A network of two-compartment neuron model implementing this principle conducts a surprisingly wide variety of temporal feature analysis. The model is also potentially useful in neural engineering.
脑启发神经系统的时间特征分析
大脑在连续信息流中识别出潜在的显著特征,但其潜在机制却知之甚少。我将展示两个执行此类分析的生物学启发的神经网络模型。看似不同的模型提出了一个共同的原则,我们称之为自一致错配检测,用于时间特征分析。实现这一原理的双室神经元网络模型进行了令人惊讶的广泛的时间特征分析。该模型在神经工程中也有潜在的用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信