Examination of Multiple Linear Regression (MLR) and Neural Network (NN) Models to Predict Eutrophication Levels in Lake Champlain

L. E. Farra, K. Wang, Z. Chen, Y. Zhu
{"title":"Examination of Multiple Linear Regression (MLR) and Neural Network (NN) Models to Predict Eutrophication Levels in Lake Champlain","authors":"L. E. Farra, K. Wang, Z. Chen, Y. Zhu","doi":"10.3808/JEIL.201900007","DOIUrl":null,"url":null,"abstract":"Eutrophication is one of the main causes of the degradation of lake ecosystems. In this paper, multiple linear regression (MLR) and neural network (NN) methods were developed as empirical models to predict chlorophyll-a (Chl-a) concentrations in Lake Champlain. The models were developed using a large dataset collected from Lake Champlain over a 24-year period from 1992 to 2016. The dataset consisted of monitoring depth (Depth), total phosphorus (TP), total nitrogen (TN), alkalinity (RegAlk), temperature (TempC), chloride (Cl) and secchi depth (Secchi). Statistical analyses showed that TP, Secchi, TN and Depth demonstrated strong relationships with Chl-a concentrations. The simulation results revealed that both the MLR and NN models performed well in predicting Chl-a concentrations, especially for low to moderate concentrations of Chl-a ( 7.5 μg/L). These models can be useful for improving lake management and providing early warnings regarding the problem of eutrophication.","PeriodicalId":143718,"journal":{"name":"Journal of Environmental Informatics Letters","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Informatics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3808/JEIL.201900007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Eutrophication is one of the main causes of the degradation of lake ecosystems. In this paper, multiple linear regression (MLR) and neural network (NN) methods were developed as empirical models to predict chlorophyll-a (Chl-a) concentrations in Lake Champlain. The models were developed using a large dataset collected from Lake Champlain over a 24-year period from 1992 to 2016. The dataset consisted of monitoring depth (Depth), total phosphorus (TP), total nitrogen (TN), alkalinity (RegAlk), temperature (TempC), chloride (Cl) and secchi depth (Secchi). Statistical analyses showed that TP, Secchi, TN and Depth demonstrated strong relationships with Chl-a concentrations. The simulation results revealed that both the MLR and NN models performed well in predicting Chl-a concentrations, especially for low to moderate concentrations of Chl-a ( 7.5 μg/L). These models can be useful for improving lake management and providing early warnings regarding the problem of eutrophication.
多元线性回归和神经网络模型预测尚普兰湖富营养化水平的检验
富营养化是湖泊生态系统退化的主要原因之一。本文采用多元线性回归(MLR)和神经网络(NN)方法作为尚普兰湖叶绿素a (Chl-a)浓度预测的经验模型。这些模型是利用1992年至2016年24年间从尚普兰湖收集的大型数据集开发的。数据集包括监测深度(depth)、总磷(TP)、总氮(TN)、碱度(RegAlk)、温度(TempC)、氯离子(Cl)和secchi深度(secchi)。统计分析表明,TP、Secchi、TN和Depth与Chl-a浓度有较强的相关性。模拟结果表明,MLR和NN模型都能很好地预测Chl-a浓度,特别是低至中等浓度的Chl-a (7.5 μg/L)。这些模型可用于改善湖泊管理和提供关于富营养化问题的早期预警。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信