A. Feelders
{"title":"Credit scoring and reject inference with mixture models","authors":"A. Feelders","doi":"10.1002/(SICI)1099-1174(200003)9:1%3C1::AID-ISAF177%3E3.0.CO;2-%23","DOIUrl":null,"url":null,"abstract":"Reject inference is the process of estimating the risk of defaulting for loan applicants that are rejected under the current acceptance policy. We propose a new reject inference method based on mixture modeling, that allows the meaningful inclusion of the rejects in the estimation process. We describe how such a model can be estimated using the EM algorithm. An experimental study shows that inclusion of the rejects can lead to a substantial improvement of the resulting classification rule. Copyright © 1999 John Wiley & Sons, Ltd.","PeriodicalId":153549,"journal":{"name":"Intell. Syst. Account. Finance Manag.","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intell. Syst. Account. Finance Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1099-1174(200003)9:1%3C1::AID-ISAF177%3E3.0.CO;2-%23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72
混合模型的信用评分和拒绝推理
拒绝推断是评估在当前接受策略下被拒绝的贷款申请人违约风险的过程。提出了一种新的基于混合建模的拒绝推理方法,该方法允许在估计过程中有意义地包含拒绝。我们描述了如何使用EM算法来估计这样的模型。一项实验研究表明,包含拒绝可以导致最终分类规则的实质性改进。版权所有©1999 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。