A. Silva, Clément Mommessin, P. Neyron, D. Trystram, Adwait Bauskar, A. Lèbre, Alexandre van Kempen, Yanik Ngoko, Yoann Ricordel
{"title":"Evaluating Computation and Data Placements in Edge Infrastructures through a Common Simulator","authors":"A. Silva, Clément Mommessin, P. Neyron, D. Trystram, Adwait Bauskar, A. Lèbre, Alexandre van Kempen, Yanik Ngoko, Yoann Ricordel","doi":"10.1109/SBAC-PAD49847.2020.00020","DOIUrl":null,"url":null,"abstract":"Scheduling computational jobs with data-sets dependencies is an important challenge of edge computing infrastructures. Although several strategies have been proposed, they have been evaluated through ad-hoc simulator extensions that are, when available, usually not maintained. This is a critical problem because it prevents researchers to –easily– perform fair comparisons between different proposals. In this paper, we propose to address this limitation by presenting a simulation engine dedicated to the evaluation and comparison of scheduling and data movement policies for edge computing use-cases. Built upon the Batsim/SimGrid toolkit, our tool includes an injector that allows the simulator to replay a series of events captured in real infrastructures. It also includes a controller that supervises storage entities and data transfers during the simulation, and a plug-in system that allows researchers to add new models to cope with the diversity of edge computing devices. We demonstrate the relevance of such a simulation toolkit by studying two scheduling strategies with four data movement policies on top of a simulated version of the Qarnot Computing platform, a production edge infrastructure based on smart heaters. We chose this use-case as it illustrates the heterogeneity as well as the uncertainties of edge infrastructures. Our ultimate goal is to gather industry and academics around a common simulator so that efforts made by one group can be factorised by others.","PeriodicalId":202581,"journal":{"name":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD49847.2020.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Scheduling computational jobs with data-sets dependencies is an important challenge of edge computing infrastructures. Although several strategies have been proposed, they have been evaluated through ad-hoc simulator extensions that are, when available, usually not maintained. This is a critical problem because it prevents researchers to –easily– perform fair comparisons between different proposals. In this paper, we propose to address this limitation by presenting a simulation engine dedicated to the evaluation and comparison of scheduling and data movement policies for edge computing use-cases. Built upon the Batsim/SimGrid toolkit, our tool includes an injector that allows the simulator to replay a series of events captured in real infrastructures. It also includes a controller that supervises storage entities and data transfers during the simulation, and a plug-in system that allows researchers to add new models to cope with the diversity of edge computing devices. We demonstrate the relevance of such a simulation toolkit by studying two scheduling strategies with four data movement policies on top of a simulated version of the Qarnot Computing platform, a production edge infrastructure based on smart heaters. We chose this use-case as it illustrates the heterogeneity as well as the uncertainties of edge infrastructures. Our ultimate goal is to gather industry and academics around a common simulator so that efforts made by one group can be factorised by others.