Adriel dos Santos Araújo, Milena H. S. Issa, A. Sánchez, D. Muchaluat-Saade, Aura Conci
{"title":"Termografia como Ferramenta de Avaliação Durante o Tratamento Neoadjuvante para Câncer de Mama","authors":"Adriel dos Santos Araújo, Milena H. S. Issa, A. Sánchez, D. Muchaluat-Saade, Aura Conci","doi":"10.5753/sbcas.2023.229813","DOIUrl":null,"url":null,"abstract":"A termografia é uma alternativa para a detecção de anomalias que afetam o padrão térmico das mamas. Embora amplamente estuda para triagem ou diagnóstico, poucos estudos a investigam para acompanhar a evolução do tratamento. Neste artigo, propõe-se uma metodologia que a use no tratamento neoadjuvante, identificando as regiões mais quentes por meio de um algoritmo de aprendizado não supervisionado k-means e construindo séries temporais baseadas em medidas estatísticas e homogeneidade. Os resultados acompanham a evolução do tratamento corretamente em pelo menos 79% dos casos com base nas medidas estatísticas e 95% dos casos quando essas são combinadas com as medidas de homogeneidade na avaliação do paciente.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229813","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A termografia é uma alternativa para a detecção de anomalias que afetam o padrão térmico das mamas. Embora amplamente estuda para triagem ou diagnóstico, poucos estudos a investigam para acompanhar a evolução do tratamento. Neste artigo, propõe-se uma metodologia que a use no tratamento neoadjuvante, identificando as regiões mais quentes por meio de um algoritmo de aprendizado não supervisionado k-means e construindo séries temporais baseadas em medidas estatísticas e homogeneidade. Os resultados acompanham a evolução do tratamento corretamente em pelo menos 79% dos casos com base nas medidas estatísticas e 95% dos casos quando essas são combinadas com as medidas de homogeneidade na avaliação do paciente.