Asymptotic Behavior of Small Perturbations for Unsteady Motion an Ideal Fluid Jet

V. K. Andreev
{"title":"Asymptotic Behavior of Small Perturbations for Unsteady Motion an Ideal Fluid Jet","authors":"V. K. Andreev","doi":"10.17516/1997-1397-2021-14-2-206-214","DOIUrl":null,"url":null,"abstract":"The stability problem of unsteady rotating circular jet motion of an ideal fluid is reduced to solving an initial-boundary value problem for Poincare–Sobolev type equation with an evolutionary condition on the jet free initial boundary. The solution of this problem is constructed by the method of variables separation. The asymptotic amplitudes behavior perturbations of the free jet boundary at t → ∞ is found. The results obtained are compared with the known results on the stability of the potential jet motion","PeriodicalId":422202,"journal":{"name":"Journal of Siberian Federal University. Mathematics and Physics","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2021-14-2-206-214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The stability problem of unsteady rotating circular jet motion of an ideal fluid is reduced to solving an initial-boundary value problem for Poincare–Sobolev type equation with an evolutionary condition on the jet free initial boundary. The solution of this problem is constructed by the method of variables separation. The asymptotic amplitudes behavior perturbations of the free jet boundary at t → ∞ is found. The results obtained are compared with the known results on the stability of the potential jet motion
理想流体射流非定常运动小扰动的渐近特性
将理想流体非定常旋转圆形射流运动的稳定性问题简化为在无射流初始边界上具有演化条件的庞加莱-索博列夫型方程的初边值问题。用分离变量的方法构造了该问题的解。得到了自由射流边界在t→∞处的渐近振幅行为摄动。所得结果与已知的势射流运动稳定性结果进行了比较
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信