Graphs of linear systems and stabilization

J. Sefton, R. Ober
{"title":"Graphs of linear systems and stabilization","authors":"J. Sefton, R. Ober","doi":"10.1109/CDC.1991.261366","DOIUrl":null,"url":null,"abstract":"The authors show how geometric ideas can be applied in control theory and in particular in robust control in order to give further insight into of fundamental issues. It is shown that stability criteria for control systems can be stated in terms of geometric notions in the Hilbert space. Two ways of modeling uncertainty in robust control have received a considerable amount of attention: uncertainty in the gap metric and coprime factor perturbations. The connection between these two uncertainty descriptions is discussed. A result is given that gives a full characterization of the maximal ball in the gap metric that can be stabilized by a controller.<<ETX>>","PeriodicalId":344553,"journal":{"name":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 30th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1991.261366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The authors show how geometric ideas can be applied in control theory and in particular in robust control in order to give further insight into of fundamental issues. It is shown that stability criteria for control systems can be stated in terms of geometric notions in the Hilbert space. Two ways of modeling uncertainty in robust control have received a considerable amount of attention: uncertainty in the gap metric and coprime factor perturbations. The connection between these two uncertainty descriptions is discussed. A result is given that gives a full characterization of the maximal ball in the gap metric that can be stabilized by a controller.<>
线性系统图与镇定
作者展示了几何思想如何应用于控制理论,特别是鲁棒控制,以进一步深入了解基本问题。证明了控制系统的稳定性判据可以用希尔伯特空间中的几何概念来表示。鲁棒控制中不确定性建模的两种方法受到了相当多的关注:间隙度量中的不确定性和素因子扰动。讨论了这两种不确定度描述之间的联系。给出了一个结果,给出了间隙度量中可以被控制器稳定的最大球的完整表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信