Multi-dimensional Equilibrium-depth Hashing Method for Large-Scale Image Retrieval

Jing Chang, Zeng Xianfeng
{"title":"Multi-dimensional Equilibrium-depth Hashing Method for Large-Scale Image Retrieval","authors":"Jing Chang, Zeng Xianfeng","doi":"10.1109/isoirs57349.2022.00014","DOIUrl":null,"url":null,"abstract":"Aiming at the limited feature extraction capability and inefficient quantization constraint mechanism of existing hashing methods,a deep multi-scale attention hashing network was proposed for large-scale image retrieval . The equilibrium network consists of two sub-networks, the main branch and the object branch, and adds a multi-dimensional significant area extraction module to the main branch network to effectively extract the saliency region in the image, and send the execution results to the object branch network to learn more detailed features. Triplet quantization constraints are introduced to reduce the quantization error and preserve the similarity relationship of pairs of samples. To verify the effectiveness of the method, extensive experiments are performed on two benchmark datasets. Experimental results show that the proposed method outperforms most existing hash retrieval methods.","PeriodicalId":405065,"journal":{"name":"2022 International Symposium on Intelligent Robotics and Systems (ISoIRS)","volume":"27 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Intelligent Robotics and Systems (ISoIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/isoirs57349.2022.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the limited feature extraction capability and inefficient quantization constraint mechanism of existing hashing methods,a deep multi-scale attention hashing network was proposed for large-scale image retrieval . The equilibrium network consists of two sub-networks, the main branch and the object branch, and adds a multi-dimensional significant area extraction module to the main branch network to effectively extract the saliency region in the image, and send the execution results to the object branch network to learn more detailed features. Triplet quantization constraints are introduced to reduce the quantization error and preserve the similarity relationship of pairs of samples. To verify the effectiveness of the method, extensive experiments are performed on two benchmark datasets. Experimental results show that the proposed method outperforms most existing hash retrieval methods.
大规模图像检索的多维平衡深度哈希方法
针对现有哈希方法特征提取能力有限、量化约束机制低效的问题,提出了一种深度多尺度注意力哈希网络用于大规模图像检索。平衡网络由主分支网络和目标分支网络两个子网络组成,并在主分支网络上增加了多维显著区域提取模块,有效提取图像中的显著区域,并将执行结果发送给目标分支网络,以学习更详细的特征。为了减小量化误差并保持样本对之间的相似关系,引入了三重态量化约束。为了验证该方法的有效性,在两个基准数据集上进行了大量的实验。实验结果表明,该方法优于大多数现有的哈希检索方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信