Decision-Level Fusion Performance Improvement From Enhanced HRR Radar Clutter Suppression

B. Kahler, Erik Blasch
{"title":"Decision-Level Fusion Performance Improvement From Enhanced HRR Radar Clutter Suppression","authors":"B. Kahler, Erik Blasch","doi":"10.5281/ZENODO.22868","DOIUrl":null,"url":null,"abstract":"Airborne radar tracking in moving ground vehicle scenarios is impacted by sensor, target, and environmental dynamics. Moving targets can be characterized by 1-D High Range Resolution (HRR) Radar profiles with sufficient Signal-to-Noise Ratio (SNR). The amplitude feature information for each range bin of the HRR profile is used to discern one target from another to help maintain track or to identify a vehicle. Typical radar clutter suppression algorithms developed for processing moving ground target data not only remove the surrounding clutter, but a portion of the target signature. Enhanced clutter suppression can be achieved using a Multi-channel Signal Subspace (MSS) algorithm, which preserves target features. In this paper, we (1) exploit extra feature information from enhanced clutter suppression for Automatic Target Recognition (ATR), (2) present a Decision-Level Fusion (DLF) gain comparison using Displaced Phase Center Antenna (DPCA) and MSS clutter suppressed HRR data; and (3) develop a confusion-matrix identity fusion result for Simultaneous Tracking and Identification (STID). The results show that more channels for MSS increase identification over DPCA, result in a slightly noisier clutter suppressed image, and preserve more target features after clutter cancellation. The paper contributions include extending a two-channel MSS clutter cancellation technique to three channels, verifying the MSS is superior to the DPCA technique for target identification, and a comparison of these techniques in a novel multi-look confusion matrix decision-level fusion process.","PeriodicalId":303238,"journal":{"name":"J. Adv. Inf. Fusion","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Adv. Inf. Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.22868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Airborne radar tracking in moving ground vehicle scenarios is impacted by sensor, target, and environmental dynamics. Moving targets can be characterized by 1-D High Range Resolution (HRR) Radar profiles with sufficient Signal-to-Noise Ratio (SNR). The amplitude feature information for each range bin of the HRR profile is used to discern one target from another to help maintain track or to identify a vehicle. Typical radar clutter suppression algorithms developed for processing moving ground target data not only remove the surrounding clutter, but a portion of the target signature. Enhanced clutter suppression can be achieved using a Multi-channel Signal Subspace (MSS) algorithm, which preserves target features. In this paper, we (1) exploit extra feature information from enhanced clutter suppression for Automatic Target Recognition (ATR), (2) present a Decision-Level Fusion (DLF) gain comparison using Displaced Phase Center Antenna (DPCA) and MSS clutter suppressed HRR data; and (3) develop a confusion-matrix identity fusion result for Simultaneous Tracking and Identification (STID). The results show that more channels for MSS increase identification over DPCA, result in a slightly noisier clutter suppressed image, and preserve more target features after clutter cancellation. The paper contributions include extending a two-channel MSS clutter cancellation technique to three channels, verifying the MSS is superior to the DPCA technique for target identification, and a comparison of these techniques in a novel multi-look confusion matrix decision-level fusion process.
基于增强HRR雷达杂波抑制的决策级融合性能改进
在移动地面车辆场景下,机载雷达跟踪受到传感器、目标和环境动力学的影响。具有足够信噪比(SNR)的一维高距离分辨率(HRR)雷达廓线可以表征运动目标。HRR剖面的每个距离仓的振幅特征信息用于区分目标,以帮助保持跟踪或识别车辆。典型的雷达杂波抑制算法在处理运动地面目标数据时,不仅能去除周围的杂波,而且能去除目标特征的一部分。采用多通道信号子空间(MSS)算法可以在保持目标特征的前提下增强杂波抑制。在本文中,我们(1)利用增强杂波抑制的额外特征信息进行自动目标识别(ATR);(2)利用位移相位中心天线(DPCA)和MSS杂波抑制的HRR数据进行决策级融合(DLF)增益比较;(3)建立用于同步跟踪与识别(STID)的混淆矩阵身份融合结果。结果表明,与DPCA相比,多通道的MSS增强了识别能力,抑制杂波后的图像噪声较低,杂波消除后保留了更多的目标特征。论文的贡献包括将两通道MSS杂波消除技术扩展到三通道,验证MSS技术优于DPCA技术用于目标识别,并在一种新的多视混淆矩阵决策级融合过程中对这些技术进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信