Matching feature points and discarding false matching pairs

Y. Wu, M. Dai
{"title":"Matching feature points and discarding false matching pairs","authors":"Y. Wu, M. Dai","doi":"10.1109/ICIA.2005.1635132","DOIUrl":null,"url":null,"abstract":"The approach is to integrate some traditional matching methods of feature point, and proposes a matching method of the feature points based on the fuzzy similarity measure of the feature points. For obtaining the complete matching between two sets of the feature points that hold the fuzzy similarity measure, we employ Hungarian method. For discarding the false matches from the matching result using Hungarian method, we employ the constraint of the epipolar geometry. Finally some experimental results are reported, which show the good performance of our scheme.","PeriodicalId":136611,"journal":{"name":"2005 IEEE International Conference on Information Acquisition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Information Acquisition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIA.2005.1635132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The approach is to integrate some traditional matching methods of feature point, and proposes a matching method of the feature points based on the fuzzy similarity measure of the feature points. For obtaining the complete matching between two sets of the feature points that hold the fuzzy similarity measure, we employ Hungarian method. For discarding the false matches from the matching result using Hungarian method, we employ the constraint of the epipolar geometry. Finally some experimental results are reported, which show the good performance of our scheme.
匹配特征点,丢弃错误的匹配对
该方法综合了传统的特征点匹配方法,提出了一种基于特征点模糊相似度度量的特征点匹配方法。为了获得两组具有模糊相似度量的特征点之间的完全匹配,我们采用了匈牙利方法。为了从匈牙利方法的匹配结果中剔除假匹配,我们采用了极几何的约束。最后给出了一些实验结果,表明了该方案的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信