Frameworks For Improving AI Explainability Using Accountability Through Regulation and Design

Arsh Shah
{"title":"Frameworks For Improving AI Explainability Using Accountability Through Regulation and Design","authors":"Arsh Shah","doi":"10.2139/ssrn.3617349","DOIUrl":null,"url":null,"abstract":"This paper discusses frameworks for improving AI explainability regulations and frameworks, drawing on ethical AI design, self-regulation, blockchain solutions for auditing, and FAT (fairness, accountability and transparency) Forensics packages forked from Github. The work takes a look at approaches to AI in the GDPR, Chinese AI Standards, United States law, and domestic Australian Law (at both the State and Federal Levels).","PeriodicalId":241211,"journal":{"name":"CompSciRN: Artificial Intelligence (Topic)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CompSciRN: Artificial Intelligence (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3617349","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses frameworks for improving AI explainability regulations and frameworks, drawing on ethical AI design, self-regulation, blockchain solutions for auditing, and FAT (fairness, accountability and transparency) Forensics packages forked from Github. The work takes a look at approaches to AI in the GDPR, Chinese AI Standards, United States law, and domestic Australian Law (at both the State and Federal Levels).
通过监管和设计使用问责制来提高人工智能可解释性的框架
本文讨论了改进人工智能可解释性法规和框架的框架,借鉴了道德人工智能设计、自我监管、用于审计的区块链解决方案以及从Github派生的FAT(公平、问责制和透明度)取证包。该研究考察了GDPR、中国人工智能标准、美国法律和澳大利亚国内法(州和联邦层面)中人工智能的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信