On the HDT with the Tree Representation for Large RDFs on GPU

Chidchanok Choksuchat, C. Phongpensri
{"title":"On the HDT with the Tree Representation for Large RDFs on GPU","authors":"Chidchanok Choksuchat, C. Phongpensri","doi":"10.1109/ICPADS.2013.116","DOIUrl":null,"url":null,"abstract":"Nowadays, semantic web technology depends on interexchange and integration of RDF data for various aspects of each social communication. The searching for possible answer to the related topics across the open data source obviously becomes a massive task. In this research, we study the RDF query with parallel processing on the GPU. In particular, in this paper, we consider the compact data representation for the RDFs which can enable importing more data to the GPUs memory to enable parallel search in the GPU. The key idea is the use of compressed data type such as HDT before going the search on GPUs. Loading the HDT file to the GPUs straightforwardly and perform searching may not be the good solutions. Thus, this work presents the tree representation from the HDT data which can com-pact the HDT triples, ease the GPU memory transfer, and enable the GPU parallel search. With the HDT representation, the size is reduced from the original RDF about 10%-30%. Together with the tree array representation, we can reduce the redundant terms from in HDT triples by 30%-50% for the test cases.","PeriodicalId":160979,"journal":{"name":"2013 International Conference on Parallel and Distributed Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.2013.116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays, semantic web technology depends on interexchange and integration of RDF data for various aspects of each social communication. The searching for possible answer to the related topics across the open data source obviously becomes a massive task. In this research, we study the RDF query with parallel processing on the GPU. In particular, in this paper, we consider the compact data representation for the RDFs which can enable importing more data to the GPUs memory to enable parallel search in the GPU. The key idea is the use of compressed data type such as HDT before going the search on GPUs. Loading the HDT file to the GPUs straightforwardly and perform searching may not be the good solutions. Thus, this work presents the tree representation from the HDT data which can com-pact the HDT triples, ease the GPU memory transfer, and enable the GPU parallel search. With the HDT representation, the size is reduced from the original RDF about 10%-30%. Together with the tree array representation, we can reduce the redundant terms from in HDT triples by 30%-50% for the test cases.
基于GPU的大型rdf树表示HDT研究
目前,语义web技术依赖于RDF数据的交换和集成,用于每个社会通信的各个方面。在开放数据源中搜索相关主题的可能答案显然是一项艰巨的任务。在本研究中,我们研究了在GPU上并行处理RDF查询。特别是,在本文中,我们考虑了rdf的紧凑数据表示,它可以将更多的数据导入到GPU内存中,从而实现GPU中的并行搜索。关键思想是在gpu上搜索之前使用压缩数据类型(如HDT)。直接将HDT文件加载到gpu并执行搜索可能不是好的解决方案。因此,这项工作提出了HDT数据的树表示,可以压缩HDT三元组,简化GPU内存传输,并使GPU并行搜索成为可能。使用HDT表示,大小比原始RDF减少了大约10%-30%。结合树形数组表示,我们可以将HDT三元组中的冗余项减少30%-50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信