quEEGNet: Quantum AI for Biosignal Processing

T. Koike-Akino, Ye Wang
{"title":"quEEGNet: Quantum AI for Biosignal Processing","authors":"T. Koike-Akino, Ye Wang","doi":"10.1109/BHI56158.2022.9926814","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce an emerging quantum machine learning (QML) framework to assist classical deep learning methods for biosignal processing applications. Specifically, we propose a hybrid quantum-classical neural network model that integrates a variational quantum circuit (VQC) into a deep neural network (DNN) for electroencephalogram (EEG), electromyogram (EMG), and electrocorticogram (ECoG) analysis. We demonstrate that the proposed quantum neural network (QNN) achieves state-of-the-art performance while the number of trainable parameters is kept small for VQC.","PeriodicalId":347210,"journal":{"name":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BHI56158.2022.9926814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce an emerging quantum machine learning (QML) framework to assist classical deep learning methods for biosignal processing applications. Specifically, we propose a hybrid quantum-classical neural network model that integrates a variational quantum circuit (VQC) into a deep neural network (DNN) for electroencephalogram (EEG), electromyogram (EMG), and electrocorticogram (ECoG) analysis. We demonstrate that the proposed quantum neural network (QNN) achieves state-of-the-art performance while the number of trainable parameters is kept small for VQC.
quEEGNet:生物信号处理的量子人工智能
在本文中,我们介绍了一个新兴的量子机器学习(QML)框架,以辅助经典的深度学习方法用于生物信号处理应用。具体来说,我们提出了一种混合量子-经典神经网络模型,该模型将变分量子电路(VQC)集成到深度神经网络(DNN)中,用于脑电图(EEG)、肌电图(EMG)和皮质电图(ECoG)分析。我们证明了所提出的量子神经网络(QNN)在VQC的可训练参数数量保持较小的情况下达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信