A Neuro Adaptive Control Strategy for Movable Power Source of Poroton Exchange Membrane Fuel Cell Using Wavelets

D. Arzaghi-Harris, M. Sedighizadeh
{"title":"A Neuro Adaptive Control Strategy for Movable Power Source of Poroton Exchange Membrane Fuel Cell Using Wavelets","authors":"D. Arzaghi-Harris, M. Sedighizadeh","doi":"10.1109/UPEC.2006.367537","DOIUrl":null,"url":null,"abstract":"Movable power sources of proton exchange membrane fuel cells (PEMFC) are the important research done in the current fuel cells (FC) field. The PEMFC system control influences the cell performance greatly and it is a control system for industrial complex problems, due to the imprecision, uncertainty and partial truth and intrinsic nonlinear characteristics of PEMFCs. In this paper an adaptive PI control strategy using neural network adaptive Morlet wavelet for control is proposed. It is based on a single layer feed forward neural networks with hidden nodes of adaptive Morlet wavelet functions controller and an infinite impulse response (IIR) recurrent structure. The IIR is combined by cascading to the network to provide double local structure resulting in improving speed of learning. The proposed method is applied to a typical 1 KW PEMFC system and the results show the proposed method has more accuracy against to MLP (multi layer perceptron) method.","PeriodicalId":184186,"journal":{"name":"Proceedings of the 41st International Universities Power Engineering Conference","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st International Universities Power Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2006.367537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Movable power sources of proton exchange membrane fuel cells (PEMFC) are the important research done in the current fuel cells (FC) field. The PEMFC system control influences the cell performance greatly and it is a control system for industrial complex problems, due to the imprecision, uncertainty and partial truth and intrinsic nonlinear characteristics of PEMFCs. In this paper an adaptive PI control strategy using neural network adaptive Morlet wavelet for control is proposed. It is based on a single layer feed forward neural networks with hidden nodes of adaptive Morlet wavelet functions controller and an infinite impulse response (IIR) recurrent structure. The IIR is combined by cascading to the network to provide double local structure resulting in improving speed of learning. The proposed method is applied to a typical 1 KW PEMFC system and the results show the proposed method has more accuracy against to MLP (multi layer perceptron) method.
基于小波的多孔交换膜燃料电池活动电源神经自适应控制策略
质子交换膜燃料电池(PEMFC)可移动电源是当前燃料电池领域的重要研究方向。由于PEMFC的不精度、不确定性、部分真值和固有的非线性特性,其控制对电池性能影响很大,是一种工业复杂问题的控制系统。提出了一种基于神经网络自适应Morlet小波的自适应PI控制策略。该方法基于自适应Morlet小波函数控制器和无限脉冲响应循环结构的隐藏节点单层前馈神经网络。通过级联的方式将IIR组合到网络中,提供双局部结构,提高了学习速度。将该方法应用于典型的1 KW PEMFC系统,结果表明该方法比多层感知器方法具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信