FaME-ML: Fast Multirate Encoding for HTTP Adaptive Streaming Using Machine Learning

Ekrem Çetinkaya, Hadi Amirpour, C. Timmerer, M. Ghanbari
{"title":"FaME-ML: Fast Multirate Encoding for HTTP Adaptive Streaming Using Machine Learning","authors":"Ekrem Çetinkaya, Hadi Amirpour, C. Timmerer, M. Ghanbari","doi":"10.1109/VCIP49819.2020.9301850","DOIUrl":null,"url":null,"abstract":"HTTP Adaptive Streaming (HAS) is the most common approach for delivering video content over the Internet. The requirement to encode the same content at different quality levels (i.e., representations) in HAS is a challenging problem for content providers. Fast multirate encoding approaches try to accelerate this process by reusing information from previously encoded representations. In this paper, we propose to use convolutional neural networks (CNNs) to speed up the encoding of multiple representations with a specific focus on parallel encoding. In parallel encoding, the overall time-complexity is limited to the maximum time-complexity of one of the representations that are encoded in parallel. Therefore, instead of reducing the time-complexity for all representations, the highest time-complexities are reduced. Experimental results show that FaME-ML achieves significant time-complexity savings in parallel encoding scenarios (41% in average) with a slight increase in bitrate and quality degradation compared to the HEVC reference software.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

HTTP Adaptive Streaming (HAS) is the most common approach for delivering video content over the Internet. The requirement to encode the same content at different quality levels (i.e., representations) in HAS is a challenging problem for content providers. Fast multirate encoding approaches try to accelerate this process by reusing information from previously encoded representations. In this paper, we propose to use convolutional neural networks (CNNs) to speed up the encoding of multiple representations with a specific focus on parallel encoding. In parallel encoding, the overall time-complexity is limited to the maximum time-complexity of one of the representations that are encoded in parallel. Therefore, instead of reducing the time-complexity for all representations, the highest time-complexities are reduced. Experimental results show that FaME-ML achieves significant time-complexity savings in parallel encoding scenarios (41% in average) with a slight increase in bitrate and quality degradation compared to the HEVC reference software.
FaME-ML:使用机器学习的HTTP自适应流的快速多速率编码
HTTP自适应流(HAS)是通过Internet传送视频内容的最常用方法。在HAS中以不同质量级别(即表示)对相同内容进行编码的需求对内容提供者来说是一个具有挑战性的问题。快速多速率编码方法试图通过重用先前编码表示中的信息来加速这一过程。在本文中,我们提出使用卷积神经网络(cnn)来加速多个表示的编码,并特别关注并行编码。在并行编码中,总时间复杂度被限制为并行编码的其中一个表示的最大时间复杂度。因此,不是降低所有表示的时间复杂度,而是降低最高的时间复杂度。实验结果表明,与HEVC参考软件相比,FaME-ML在并行编码场景下显著节省了时间复杂度(平均41%),比特率和质量下降略有增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信