Data Augmentation using Evolutionary Image Processing

Kosaku Fujita, Masayuki Kobayashi, T. Nagao
{"title":"Data Augmentation using Evolutionary Image Processing","authors":"Kosaku Fujita, Masayuki Kobayashi, T. Nagao","doi":"10.1109/DICTA.2018.8615799","DOIUrl":null,"url":null,"abstract":"In the machine learning community, data augmentation techniques have been widely used to make deep neural networks invariant to object transition. However, less attention has been paid to data augmentation in traditional classification methods. In this paper, we take a closer look at traditional classification methods and introduce a new data augmentation technique based on the concept of image transformation. Starting with a few existing examples, we add noise and generate new data points to reduce sparseness in a given feature space. Then, we generate images corresponding to the new data points, although this is usually an ill-posed problem. Herein, the novelty is in constructing an image transformation tree and generating new data from a small number of instances. This allows us to reduce sparseness in the feature space and build more robust classifiers. We evaluate our method on the Caltech-101 dataset to verify its potential. In the context of the situation where the amount of training data is limited, we demonstrate that the support vector machine-based classifiers trained with an augmented dataset using our method outperform classifiers trained with the original dataset in most cases.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In the machine learning community, data augmentation techniques have been widely used to make deep neural networks invariant to object transition. However, less attention has been paid to data augmentation in traditional classification methods. In this paper, we take a closer look at traditional classification methods and introduce a new data augmentation technique based on the concept of image transformation. Starting with a few existing examples, we add noise and generate new data points to reduce sparseness in a given feature space. Then, we generate images corresponding to the new data points, although this is usually an ill-posed problem. Herein, the novelty is in constructing an image transformation tree and generating new data from a small number of instances. This allows us to reduce sparseness in the feature space and build more robust classifiers. We evaluate our method on the Caltech-101 dataset to verify its potential. In the context of the situation where the amount of training data is limited, we demonstrate that the support vector machine-based classifiers trained with an augmented dataset using our method outperform classifiers trained with the original dataset in most cases.
使用进化图像处理的数据增强
在机器学习领域,数据增强技术被广泛用于使深度神经网络不受对象转移的影响。然而,传统的分类方法对数据增强的关注较少。本文在分析传统分类方法的基础上,提出了一种新的基于图像变换概念的数据增强技术。从一些现有的例子开始,我们添加噪声并生成新的数据点来减少给定特征空间的稀疏性。然后,我们生成与新数据点相对应的图像,尽管这通常是一个不适定问题。在此,新颖之处在于构建图像转换树并从少量实例中生成新数据。这使我们能够减少特征空间的稀疏性,并构建更健壮的分类器。我们在Caltech-101数据集上评估了我们的方法,以验证其潜力。在训练数据量有限的情况下,我们证明了使用我们的方法使用增强数据集训练的基于支持向量机的分类器在大多数情况下优于使用原始数据集训练的分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信