Multi-frame Approaches To Improve Face Recognition

D. Thomas, K. Bowyer, P. Flynn
{"title":"Multi-frame Approaches To Improve Face Recognition","authors":"D. Thomas, K. Bowyer, P. Flynn","doi":"10.1109/WMVC.2007.29","DOIUrl":null,"url":null,"abstract":"Face recognition from video sequences is becoming an important area of biometrics research. In this work, we explore different strategies to improve face recognition performance from video. We develop a good strategy to select the smallest number of frames to achieve a high level of performance. We apply Principal Component Analysis to identify suitable frames to represent the subjects. We demonstrate our approaches on our dataset, which uses three different cameras and is larger than any known research database of video face sequences. Finally, we compare our approach to an existing approach from UCSD [8, 9] and show that it performs slightly better than that approach (99% rank one recognition rate).","PeriodicalId":177842,"journal":{"name":"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Motion and Video Computing (WMVC'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMVC.2007.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Face recognition from video sequences is becoming an important area of biometrics research. In this work, we explore different strategies to improve face recognition performance from video. We develop a good strategy to select the smallest number of frames to achieve a high level of performance. We apply Principal Component Analysis to identify suitable frames to represent the subjects. We demonstrate our approaches on our dataset, which uses three different cameras and is larger than any known research database of video face sequences. Finally, we compare our approach to an existing approach from UCSD [8, 9] and show that it performs slightly better than that approach (99% rank one recognition rate).
改进人脸识别的多帧方法
基于视频序列的人脸识别已成为生物识别技术研究的一个重要领域。在这项工作中,我们探索了不同的策略来提高视频的人脸识别性能。我们开发了一个很好的策略来选择最小的帧数来实现高水平的性能。我们应用主成分分析来确定合适的框架来代表受试者。我们在我们的数据集上展示了我们的方法,该数据集使用三个不同的摄像头,比任何已知的视频人脸序列研究数据库都要大。最后,我们将我们的方法与UCSD的现有方法[8,9]进行了比较,并表明它的性能略好于该方法(99%排名第一的识别率)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信