O. D. Restrepo, Qun Gao, S. Pandey, E. Cruz‐Silva, E. Bazizi
{"title":"First Principles Calculations of the Effect of Stress in the I-V Characteristics of the CoSi2/Si Interface","authors":"O. D. Restrepo, Qun Gao, S. Pandey, E. Cruz‐Silva, E. Bazizi","doi":"10.1109/SISPAD.2018.8551750","DOIUrl":null,"url":null,"abstract":"We present ab initio-based electronic transport calculations on the effect of uniaxial and bi-axial stress on the CoSi2/n Si interface resistivity for the three main silicon crystallographic directions. For the [001] case, we identify two distinctive low and high bias conduction regimes for both compressive and tensile stress. In these regimes, the current is dominated by electronic transmission pathways near the Γ point for bias up to ~0.1V, while for higher bias it is dominated by transmission at the (±1/2, ±1/2) conduction band valleys of the Brillouin zone, which results in a contact resistivity decrease of up to 30% at 0.2V bias. This effect is less pronounced for the [110] direction, and negligible for the [111] case due to the symmetry of the Si conduction band valleys along these directions. This study provides insight into stress-based optimization pathways for contact resistivity reduction of silicide interfaces in next generation semiconductor devices.","PeriodicalId":170070,"journal":{"name":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"452 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2018.8551750","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present ab initio-based electronic transport calculations on the effect of uniaxial and bi-axial stress on the CoSi2/n Si interface resistivity for the three main silicon crystallographic directions. For the [001] case, we identify two distinctive low and high bias conduction regimes for both compressive and tensile stress. In these regimes, the current is dominated by electronic transmission pathways near the Γ point for bias up to ~0.1V, while for higher bias it is dominated by transmission at the (±1/2, ±1/2) conduction band valleys of the Brillouin zone, which results in a contact resistivity decrease of up to 30% at 0.2V bias. This effect is less pronounced for the [110] direction, and negligible for the [111] case due to the symmetry of the Si conduction band valleys along these directions. This study provides insight into stress-based optimization pathways for contact resistivity reduction of silicide interfaces in next generation semiconductor devices.