Spatiotemporal operators and optic flow

W. Niessen, J. Duncan, L. Florack, B. M. terHaarRomeny, M. Viergever
{"title":"Spatiotemporal operators and optic flow","authors":"W. Niessen, J. Duncan, L. Florack, B. M. terHaarRomeny, M. Viergever","doi":"10.1109/PBMCV.1995.514671","DOIUrl":null,"url":null,"abstract":"This paper describes efforts to extract motion characteristics of\na scene directly from the gray-scale data. The measurements are, by the\nvery nature of the sampling of image data, integral values. The approach\nsolves the ill-posedness of differentiation. A complete class of\nspatiotemporal operators which concisely captures the local\nspatiotemporal information tip to any order in space and time is\nproposed. Spatial and temporal scale are treated as free parameters. The\noperators are used to extract spatiotemporal features and to estimate\nthe velocity field. In the estimation of the velocity field we use the\ngeneralized optic flow constraint equation, in which the signal over a\nregion which may be subject to the flow field is conserved rather than\nthe gray-value associated with a voxel. Examples on test images and\nMR-data of the Left Ventricle are shown","PeriodicalId":343932,"journal":{"name":"Proceedings of the Workshop on Physics-Based Modeling in Computer Vision","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Physics-Based Modeling in Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PBMCV.1995.514671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper describes efforts to extract motion characteristics of a scene directly from the gray-scale data. The measurements are, by the very nature of the sampling of image data, integral values. The approach solves the ill-posedness of differentiation. A complete class of spatiotemporal operators which concisely captures the local spatiotemporal information tip to any order in space and time is proposed. Spatial and temporal scale are treated as free parameters. The operators are used to extract spatiotemporal features and to estimate the velocity field. In the estimation of the velocity field we use the generalized optic flow constraint equation, in which the signal over a region which may be subject to the flow field is conserved rather than the gray-value associated with a voxel. Examples on test images and MR-data of the Left Ventricle are shown
时空算子和光流
本文描述了直接从灰度数据中提取场景运动特征的方法。根据图像数据采样的本质,测量值是整数值。该方法解决了微分的不适定性。提出了一种完整的时空算子,它可以在空间和时间的任意顺序上简洁地捕获局部时空信息。空间尺度和时间尺度作为自由参数。该算子用于提取时空特征和估计速度场。在速度场的估计中,我们使用广义光流约束方程,其中可能受流场影响的区域上的信号是守恒的,而不是与体素相关的灰度值。给出了左心室测试图像和核磁共振数据的例子
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信