{"title":"The case for a configure-and-execute paradigm","authors":"F. Vahid, T. Givargis","doi":"10.1145/301177.301211","DOIUrl":null,"url":null,"abstract":"Tomorrow's silicon chips will hold more transistors than most embedded system designers could possibly use under the prevalent \"describe-and-synthesize\" design paradigm. Many have thus re-proposed the once popular \"capture-and-simulate\" paradigm, wherein pre-designed Intellectual Property software and hardware components are connected and co-simulated, to reduce this gap. However, major hurdles limit this paradigm to only very high-cost embedded systems. In this paper, we describe those hurdles and present a case for a new \"configure-and-execute\" paradigm for mainstream embedded systems, based on the idea of deconstructing rather than constructing systems, which takes advantage of the surplus transistors in a way that can overcome the hurdles and significantly reduce time-to-market.","PeriodicalId":344739,"journal":{"name":"Proceedings of the Seventh International Workshop on Hardware/Software Codesign (CODES'99) (IEEE Cat. No.99TH8450)","volume":"447 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh International Workshop on Hardware/Software Codesign (CODES'99) (IEEE Cat. No.99TH8450)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/301177.301211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
Tomorrow's silicon chips will hold more transistors than most embedded system designers could possibly use under the prevalent "describe-and-synthesize" design paradigm. Many have thus re-proposed the once popular "capture-and-simulate" paradigm, wherein pre-designed Intellectual Property software and hardware components are connected and co-simulated, to reduce this gap. However, major hurdles limit this paradigm to only very high-cost embedded systems. In this paper, we describe those hurdles and present a case for a new "configure-and-execute" paradigm for mainstream embedded systems, based on the idea of deconstructing rather than constructing systems, which takes advantage of the surplus transistors in a way that can overcome the hurdles and significantly reduce time-to-market.