Constructing Compact Ansätze for Scattering Amplitudes

Giuseppe De Laurentis, B. Page
{"title":"Constructing Compact Ansätze for Scattering Amplitudes","authors":"Giuseppe De Laurentis, B. Page","doi":"10.22323/1.416.0038","DOIUrl":null,"url":null,"abstract":"In these proceedings, we discuss the recent approach of Ref. [1] for the construction of Ansätze for scattering amplitudes. The method builds powerful constraints on the analytic structure of the rational functions in amplitudes from numerical tests of their behavior close to singularity surfaces. We discuss how we systematically understand these surfaces and how the singular behavior of the rational function can be incorporated into an Ansatz using techniques from algebraic geometry. To perform the numerical sampling, we make use of 𝑝 -adic numbers, a number-theoretical field that can be considered a cousin of finite fields. The 𝑝 -adic numbers admit a non-trivial absolute value, as well as analytic functions such as the 𝑝 -adic logarithm. We provide a detailed example of the approach applied to an NMHV tree amplitude and discuss the efficacy when applied to the two-loop leading-color amplitude for three-photon production at hadron colliders.","PeriodicalId":151433,"journal":{"name":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.416.0038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In these proceedings, we discuss the recent approach of Ref. [1] for the construction of Ansätze for scattering amplitudes. The method builds powerful constraints on the analytic structure of the rational functions in amplitudes from numerical tests of their behavior close to singularity surfaces. We discuss how we systematically understand these surfaces and how the singular behavior of the rational function can be incorporated into an Ansatz using techniques from algebraic geometry. To perform the numerical sampling, we make use of 𝑝 -adic numbers, a number-theoretical field that can be considered a cousin of finite fields. The 𝑝 -adic numbers admit a non-trivial absolute value, as well as analytic functions such as the 𝑝 -adic logarithm. We provide a detailed example of the approach applied to an NMHV tree amplitude and discuss the efficacy when applied to the two-loop leading-color amplitude for three-photon production at hadron colliders.
构建紧凑Ansätze散射振幅
在这些程序中,我们讨论了文献[1]最近用于构建Ansätze散射振幅的方法。该方法对振幅的有理函数的解析结构建立了强有力的约束,这些解析结构是由它们靠近奇异曲面的行为的数值试验得到的。我们讨论了如何系统地理解这些曲面,以及如何利用代数几何的技术将有理函数的奇异行为整合到一个Ansatz中。为了执行数值采样,我们使用𝑝-adic数,这是一种可以被认为是有限域的表兄弟的数值理论域。𝑝-adic数允许一个非平凡的绝对值,以及解析函数,如𝑝-adic对数。我们提供了将该方法应用于NMHV树振幅的详细示例,并讨论了将该方法应用于强子对撞机中三光子产生的双环先导色振幅时的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信