{"title":"Optimal BESS Sizing & Allocation for Transfer Capacity Increase in Distribution Grids","authors":"P. Subbotin, Y. P. Gusev, D. Dvorkin","doi":"10.23919/SMAGRIMET48809.2020.9263996","DOIUrl":null,"url":null,"abstract":"Modern tendencies in power grid development are focused on integrating renewable wind and solar energy sources in medium voltage grids. The prospects and validity of this tendency are in little doubt. However, this integration should be conducted, taking into account many factors, such as the grid's transfer capacity and its components, mode parameters, and limitations put on them, load and power flow changes over time, etc. The developed countries' experience shows that the significant increase of renewable sources requires either new approaches in power grid management and control or energy storage systems to be installed. It is highly necessary in order to keep the system state in the area of allowable values simultaneously with maximum power production from renewable sources. In the maximum demand mode, these storage systems near the consumers allow to supply them, avoiding additional capital investments in grid renovation to increase its transfer capacity. On the contrary, in the off-peak condition, these storage systems are charging up by the power produced at renewable source power plants, regulating thus voltage and accumulating energy to be used in further. Unfortunately, the bleeding-edge technologies of energy storage systems keep being quite expensive, which makes it essential to integrate them with the highest effectiveness. This contribution outlines an approach for optimal energy storage systems sizing and allocation based on the regression analysis and takes into account the aforementioned problems.","PeriodicalId":272673,"journal":{"name":"2020 3rd International Colloquium on Intelligent Grid Metrology (SMAGRIMET)","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Colloquium on Intelligent Grid Metrology (SMAGRIMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SMAGRIMET48809.2020.9263996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Modern tendencies in power grid development are focused on integrating renewable wind and solar energy sources in medium voltage grids. The prospects and validity of this tendency are in little doubt. However, this integration should be conducted, taking into account many factors, such as the grid's transfer capacity and its components, mode parameters, and limitations put on them, load and power flow changes over time, etc. The developed countries' experience shows that the significant increase of renewable sources requires either new approaches in power grid management and control or energy storage systems to be installed. It is highly necessary in order to keep the system state in the area of allowable values simultaneously with maximum power production from renewable sources. In the maximum demand mode, these storage systems near the consumers allow to supply them, avoiding additional capital investments in grid renovation to increase its transfer capacity. On the contrary, in the off-peak condition, these storage systems are charging up by the power produced at renewable source power plants, regulating thus voltage and accumulating energy to be used in further. Unfortunately, the bleeding-edge technologies of energy storage systems keep being quite expensive, which makes it essential to integrate them with the highest effectiveness. This contribution outlines an approach for optimal energy storage systems sizing and allocation based on the regression analysis and takes into account the aforementioned problems.