Modelling Climate Data Factors Influencing Fine-Particulate Matter Density in the Near-Ground Atmosphere

A. Ghobakhlou, S. Zandi, P. Sallis
{"title":"Modelling Climate Data Factors Influencing Fine-Particulate Matter Density in the Near-Ground Atmosphere","authors":"A. Ghobakhlou, S. Zandi, P. Sallis","doi":"10.1109/AMS.2017.15","DOIUrl":null,"url":null,"abstract":"this paper describes the relationship of climate toatmospheric particulate matter. The climate factors ofprecipitation, humidity, temperature and wind speed aremapped to the fine-particulate substances measured as being 2.5micrometers in diameter (PM2.5). Using the climate variablesas indicators, the paper illustrates a method for estimating theconcentration potential for PM2.5 in the near-groundatmosphere. The preferred method described is selected fromthree analytical approaches compared using a common data set.The three methods used are Multiple Linear Regression (MLR),Multilayer Perceptron (MLP) and Fuzzy Neural Networksmetho","PeriodicalId":219494,"journal":{"name":"2017 Asia Modelling Symposium (AMS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia Modelling Symposium (AMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2017.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

this paper describes the relationship of climate toatmospheric particulate matter. The climate factors ofprecipitation, humidity, temperature and wind speed aremapped to the fine-particulate substances measured as being 2.5micrometers in diameter (PM2.5). Using the climate variablesas indicators, the paper illustrates a method for estimating theconcentration potential for PM2.5 in the near-groundatmosphere. The preferred method described is selected fromthree analytical approaches compared using a common data set.The three methods used are Multiple Linear Regression (MLR),Multilayer Perceptron (MLP) and Fuzzy Neural Networksmetho
影响近地大气细颗粒物密度的气候数据因子模拟
本文描述了气候与大气颗粒物的关系。降水、湿度、温度和风速等气候因素被映射到直径为2.5微米的细颗粒物(PM2.5)上。本文以气候变量为指标,阐述了一种估算近地面大气PM2.5浓度潜力的方法。从使用公共数据集比较的三种分析方法中选择所描述的首选方法。使用的三种方法是多元线性回归(MLR),多层感知器(MLP)和模糊神经网络方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信