A comparison study of SSVEP detection methods using the Emotiv Epoc headset

Omar Trigui, W. Zouch, M. B. Ben Messaoud
{"title":"A comparison study of SSVEP detection methods using the Emotiv Epoc headset","authors":"Omar Trigui, W. Zouch, M. B. Ben Messaoud","doi":"10.1109/STA.2015.7505108","DOIUrl":null,"url":null,"abstract":"Recently, the low cost EEG acquisition systems such as the Emotiv Epoc give new tools to develop Brain-Computer interface systems for everyday use outside the laboratory. However, the low sampling rate and the low number of channels remain possible sources of failure. The Canonical Correlation Analysis and the Multivariate Synchronization Index (MSI) methods are applied in a SSVEP-based BCI in order to compare their accuracies. The main goal of this research is to find the appropriate method allowing the control of an autonomous wheelchair by the severely handicapped people. The experimental results show that the MSI method reaches 96% of accuracy with optimal parameters.","PeriodicalId":128530,"journal":{"name":"2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STA.2015.7505108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Recently, the low cost EEG acquisition systems such as the Emotiv Epoc give new tools to develop Brain-Computer interface systems for everyday use outside the laboratory. However, the low sampling rate and the low number of channels remain possible sources of failure. The Canonical Correlation Analysis and the Multivariate Synchronization Index (MSI) methods are applied in a SSVEP-based BCI in order to compare their accuracies. The main goal of this research is to find the appropriate method allowing the control of an autonomous wheelchair by the severely handicapped people. The experimental results show that the MSI method reaches 96% of accuracy with optimal parameters.
Emotiv Epoc耳机对SSVEP检测方法的比较研究
最近,Emotiv Epoc等低成本脑电图采集系统为开发实验室外日常使用的脑机接口系统提供了新的工具。然而,低采样率和低通道数仍然是可能的故障来源。将典型相关分析和多变量同步指数方法应用于基于ssvep的脑机接口,比较它们的精度。这项研究的主要目标是找到合适的方法,允许严重残疾人控制自动轮椅。实验结果表明,在最优参数下,MSI方法的准确率达到96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信