Statistical-based anomaly detection for NFV services

M. Kourtis, G. Xilouris, G. Gardikis, Ioannis Koutras
{"title":"Statistical-based anomaly detection for NFV services","authors":"M. Kourtis, G. Xilouris, G. Gardikis, Ioannis Koutras","doi":"10.1109/NFV-SDN.2016.7919492","DOIUrl":null,"url":null,"abstract":"Large-scale, carrier-grade Network Functions Virtualisation (NFV) services are expected to involve a significant number of Virtual Network Functions, deployed across multiple Points-of-Presence (PoPs) and possibly in heterogeneous infrastructures. While proper monitoring is crucial for the commercial viability of NFV services, effectively and efficiently monitoring a huge number of VNF instances, promptly detecting any malfunctions or anomalies in order to trigger corrective actions, becomes a real challenge. This paper presents the use of an open-source monitoring system especially tailored for NFV in conjunction with statistical approaches commonly used for anomaly detection, towards the timely detection of anomalies in deployed NFV services.","PeriodicalId":448203,"journal":{"name":"2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NFV-SDN.2016.7919492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Large-scale, carrier-grade Network Functions Virtualisation (NFV) services are expected to involve a significant number of Virtual Network Functions, deployed across multiple Points-of-Presence (PoPs) and possibly in heterogeneous infrastructures. While proper monitoring is crucial for the commercial viability of NFV services, effectively and efficiently monitoring a huge number of VNF instances, promptly detecting any malfunctions or anomalies in order to trigger corrective actions, becomes a real challenge. This paper presents the use of an open-source monitoring system especially tailored for NFV in conjunction with statistical approaches commonly used for anomaly detection, towards the timely detection of anomalies in deployed NFV services.
基于统计的NFV服务异常检测
大规模的运营商级网络功能虚拟化(NFV)服务预计将涉及大量的虚拟网络功能,部署在多个存在点(pop)上,并可能部署在异构基础设施中。虽然适当的监控对NFV服务的商业可行性至关重要,但有效和高效地监控大量的VNF实例,及时发现任何故障或异常,以便触发纠正措施,成为一个真正的挑战。本文介绍了一个专门为NFV量身定制的开源监控系统的使用,并结合了通常用于异常检测的统计方法,以便及时检测部署的NFV服务中的异常。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信