Decentralized and Partially Decentralized Reinforcement Learning for Distributed Combinatorial Optimization Problems

Omkar J. Tilak, S. Mukhopadhyay
{"title":"Decentralized and Partially Decentralized Reinforcement Learning for Distributed Combinatorial Optimization Problems","authors":"Omkar J. Tilak, S. Mukhopadhyay","doi":"10.1109/ICMLA.2010.64","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a framework for solving computationally hard, distributed function optimization problems using reinforcement learning techniques. In particular, we model a function optimization problem as an identical payoff game played by a team of reinforcement learning agents. The team performs a stochastic search through the domain space of the parameters of the function. However, current game learning algorithms suffer from significant memory requirement, significant communication overhead and slow convergence. To alleviate these problems, we present novel decentralized and partially decentralized reinforcement learning algorithms for the team. Simulation results are presented for the NP-Hard sensor subset selection problem to show that the agents learn locally optimal parameter values and illustrate the advantages of the proposed algorithms.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we describe a framework for solving computationally hard, distributed function optimization problems using reinforcement learning techniques. In particular, we model a function optimization problem as an identical payoff game played by a team of reinforcement learning agents. The team performs a stochastic search through the domain space of the parameters of the function. However, current game learning algorithms suffer from significant memory requirement, significant communication overhead and slow convergence. To alleviate these problems, we present novel decentralized and partially decentralized reinforcement learning algorithms for the team. Simulation results are presented for the NP-Hard sensor subset selection problem to show that the agents learn locally optimal parameter values and illustrate the advantages of the proposed algorithms.
分布式组合优化问题的分散和部分分散强化学习
在本文中,我们描述了一个使用强化学习技术解决计算困难的分布式函数优化问题的框架。特别是,我们将函数优化问题建模为一个由强化学习代理团队进行的相同收益博弈。该团队通过函数参数的域空间进行随机搜索。然而,当前的游戏学习算法存在巨大的内存需求、巨大的通信开销和缓慢的收敛。为了缓解这些问题,我们为团队提出了新的分散和部分分散的强化学习算法。最后给出了NP-Hard传感器子集选择问题的仿真结果,表明智能体能够学习到局部最优参数值,并说明了所提算法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信