{"title":"Motor Activity-Perception Based Approach for Improving Teleoperation Systems","authors":"R. Chellali, F. Dionnet, Abdeldjallil Naceri","doi":"10.1109/SMC-IT.2009.24","DOIUrl":null,"url":null,"abstract":"This paper reports on studies we are conducting to evaluate 3D stereoscopic rendering systems accuracy and efficiency. These studies are part of our project dealing with tele-operation, namely the use of virtual reality technology to increase immersion feeling of teleoperators and to test specific conditions by changing the feeled physical laws. We concentrate on depth perception because it has been shown to be a major factor for simple motor actions like navigation tasks or for complex and dexterous manipulation tasks. We present our stereoscopic rendering system and the methodology we developed to assess it and validate its efficiency in delivering the right stimulations to perceive accurately virtual worlds in 3D. We discuss also its potential use in worlds where physics (gravity forces, viscosity, etc.) aren't conventional.","PeriodicalId":422009,"journal":{"name":"2009 Third IEEE International Conference on Space Mission Challenges for Information Technology","volume":"466 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third IEEE International Conference on Space Mission Challenges for Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMC-IT.2009.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper reports on studies we are conducting to evaluate 3D stereoscopic rendering systems accuracy and efficiency. These studies are part of our project dealing with tele-operation, namely the use of virtual reality technology to increase immersion feeling of teleoperators and to test specific conditions by changing the feeled physical laws. We concentrate on depth perception because it has been shown to be a major factor for simple motor actions like navigation tasks or for complex and dexterous manipulation tasks. We present our stereoscopic rendering system and the methodology we developed to assess it and validate its efficiency in delivering the right stimulations to perceive accurately virtual worlds in 3D. We discuss also its potential use in worlds where physics (gravity forces, viscosity, etc.) aren't conventional.