Adaptive Small Cells Clustering based on Many-to-Many Swap Matching for Ultra-Dense Networks

Ning Chen, Siqiang Ke, Zhibin Gao, Hongyue Lin, M. Liwang, Lianfeng Huang
{"title":"Adaptive Small Cells Clustering based on Many-to-Many Swap Matching for Ultra-Dense Networks","authors":"Ning Chen, Siqiang Ke, Zhibin Gao, Hongyue Lin, M. Liwang, Lianfeng Huang","doi":"10.1109/ICCSE.2019.8845426","DOIUrl":null,"url":null,"abstract":"Ultra-dense networks (UDN) play an important role in 5G, which significantly supports the network foundation for ultra-high density device connection and ultra-high speed data demand in future mobile network. However, the increasing density of small cell in UDN brings greater challenge to resource allocation in wireless networks. In order to achieve efficient resource allocation, a many-to-many swap matching (M-MSM) based algorithm of adaptive small cells clustering in ultra-dense networks is proposed in the paper. The many-to-many matching algorithm is utilized to divide the user-centric small cells into different clusters. Meanwhile the matching effect is further optimized by the swap matching algorithm. Simulation results show that the proposed M-MSM algorithm can effectively improve the maximum achievable rate of the UDN.","PeriodicalId":351346,"journal":{"name":"2019 14th International Conference on Computer Science & Education (ICCSE)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 14th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2019.8845426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultra-dense networks (UDN) play an important role in 5G, which significantly supports the network foundation for ultra-high density device connection and ultra-high speed data demand in future mobile network. However, the increasing density of small cell in UDN brings greater challenge to resource allocation in wireless networks. In order to achieve efficient resource allocation, a many-to-many swap matching (M-MSM) based algorithm of adaptive small cells clustering in ultra-dense networks is proposed in the paper. The many-to-many matching algorithm is utilized to divide the user-centric small cells into different clusters. Meanwhile the matching effect is further optimized by the swap matching algorithm. Simulation results show that the proposed M-MSM algorithm can effectively improve the maximum achievable rate of the UDN.
基于多对多交换匹配的超密集网络自适应小细胞聚类
超密集网络(UDN)在5G中发挥着重要作用,为未来移动网络的超高密度设备连接和超高速数据需求提供了重要的网络基础支撑。然而,UDN中小蜂窝的密度不断增加,给无线网络的资源分配带来了更大的挑战。为了实现资源的高效分配,提出了一种基于多对多交换匹配(M-MSM)的超密集网络自适应小单元聚类算法。采用多对多匹配算法将以用户为中心的小单元划分为不同的簇。同时通过交换匹配算法进一步优化匹配效果。仿真结果表明,所提出的M-MSM算法可以有效地提高UDN的最大可达率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信